• Title/Summary/Keyword: Identity-based encryption

Search Result 80, Processing Time 0.019 seconds

Efficient Multi-Receiver Certificate-Based Encryption Scheme and Its Application (효율적인 인증서기반 다중수신자 암호 기법 및 응용)

  • Sur, Shul;Jung, Chae-Duk;Rhee, Kyung-Hyune
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.12
    • /
    • pp.2271-2279
    • /
    • 2007
  • In this paper, we introduce the notion of certificate-based encryption in multi-receiver environment, which avoids the inherent key escrow problem while preserving the implicit certification in identity-based encryption. We also construct a highly efficient certificate-based encryption scheme for multi-receiver environment, which eliminates pairing computation to encrypt a message for multiple receivers. Moreover, the proposed scheme only needs one pairing computation for decrypting the ciphertext. We compare our scheme with the most efficient identity-based encryption scheme for multi-receiver environment proposed by Baek et.al.[1] in terms of the computational point of view, and show that our scheme provides better efficiency than Baek's scheme. Finally, we discuss how to properly transform our scheme into a new public key broadcast encryption scheme based on subset-cover framework.

A Survey on Cloud Storage System Security via Encryption Mechanisms

  • Alsuwat, Wejdan;Alsuwat, Hatim
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.181-186
    • /
    • 2022
  • Cloud computing is the latest approach that is developed for reducing the storage of space to store the data and helps the quick sharing of the data. An increase in the cloud computing users is observed that is also making the users be prone to hacker's attacks. To increase the efficiency of cloud storage encryption mechanisms are used. The encryption techniques that are discussed in this survey paper are searchable encryption, attribute-based, Identity-based encryption, homomorphic encryption, and cloud DES algorithms. There are several limitations and disadvantages of each of the given techniques and they are discussed in this survey paper. Techniques are found to be effective and they can increase the security of cloud storage systems.

An ID-based Broadcast Encryption Scheme for Cloud-network Integration in Smart Grid

  • Niu, Shufen;Fang, Lizhi;Song, Mi;Yu, Fei;Han, Song
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3365-3383
    • /
    • 2021
  • The rapid growth of data has successfully promoted the development of modern information and communication technologies, which are used to process data generated by public urban departments and citizens in modern cities. In specific application areas where the ciphertext of messages generated by different users' needs to be transmitted, the concept of broadcast encryption is important. It can not only improve the transmission efficiency but also reduce the cost. However, the existing schemes cannot entirely ensure the privacy of receivers and dynamically adjust the user authorization. To mitigate these deficiencies, we propose an efficient, secure identity-based broadcast encryption scheme that achieves direct revocation and receiver anonymity, along with the analysis of smart grid solutions. Moreover, we constructed a security model to ensure wireless data transmission under cloud computing and internet of things integrated devices. The achieved results reveal that the proposed scheme is semantically secure in the random oracle model. The performance of the proposed scheme is evaluated through theoretical analysis and numerical experiments.

Certificate-Based Encryption Scheme without Pairing

  • Yao, Ji;Li, Jiguo;Zhang, Yichen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.6
    • /
    • pp.1480-1491
    • /
    • 2013
  • Certificate-based cryptography is a new cryptographic primitive which eliminates the necessity of certificates in the traditional public key cryptography and simultaneously overcomes the inherent key escrow problem suffered in identity-based cryptography. However, to the best of our knowledge, all existed constructions of certificate-based encryption so far have to be based on the bilinear pairings. The pairing calculation is perceived to be expensive compared with normal operations such as modular exponentiations in finite fields. The costly pairing computation prevents it from wide application, especially for the computation limited wireless sensor networks. In order to improve efficiency, we propose a new certificate-based encryption scheme that does not depend on the pairing computation. Based on the decision Diffie-Hellman problem assumption, the scheme's security is proved to be against the chosen ciphertext attack in the random oracle. Performance comparisons show that our scheme outperforms the existing schemes.

Accountable Authority Revocable Identity-Based Encryption (사용자 폐기를 지원하는 책임 기관 ID 기반 암호)

  • Choi, Suri;Lee, Dong Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.6
    • /
    • pp.1281-1293
    • /
    • 2017
  • In 2001, Boneh and Franklin proposed Identity-Based Encryption(IBE) that does not require a certificate like Public Key Infrastructure(PKI) by using user's Identity as a public key. However, IBE has a key escrow problem because the Private Key Generator(PKG), who is a trusted authority, generates a secret key of every user. Also, it does not support efficient revocation when the user's secret key is exposed or the system needs to revoke the user. Therefore, in order to use IBE as PKI that currently used, it is necessary to solve the key escrow problem and the revocation problem. In this paper, to solve those two problems, we suggest Accountable Authority Revocable IBE(A-RIBE) based on Accountable Authority IBE that mitigates the key escrow problem and Revocable IBE that solves the revocation problem. Also, we define the security model suitable foe A-RIBE, and analyze the principle of designing A-RIBE according to based A-IBE and RIBE and their advantage and disadvantage.

A Secure Health Data Transmission Protocol Using Identity-Based Proxy Re-Encryption in Remote Healthcare Monitoring System (원격건강정보 모니터링 시스템에서 신원기반 프록시 재암호화 기법을 이용한 건강정보 전송 보안 프로토콜)

  • Noh, Si-Wan;Park, Youngho;Rhee, Kyung-Hyune
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.4
    • /
    • pp.197-202
    • /
    • 2017
  • The remote healthcare monitoring system enables a doctor to diagnose and monitor patient's health problem from a distance. Previous researches have focused on key establishment method between a patient and a particular doctor to solve personal health information disclosure problem in data transmission process. However, when considering a misdiagnosis of doctor, the result of a diagnosis by a many doctors is more reliable. In previous work, in order to select multiple doctors, patient should generate shared key for each chosen doctor and perform many times encryptions. Therefore, in this paper, we propose a secure data transmission protocol for receiving diagnosis from multiple doctors using identity-based proxy re-encryption scheme. In proposed protocol, a patient don't need key management work for session key. Also, monitoring server performs re-encryption process on behalf of patient. So, we can reduce computational burden of patient in previous work.

Multiple and Unlinkable Public Key Encryption without Certificates (불연계성을 갖는 다중 공개키 암호 시스템)

  • Park, So-Young;Lee, Sang-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.1
    • /
    • pp.20-34
    • /
    • 2009
  • We newly propose a multiple and unlinkable identity-based public key encryption scheme which allows the use of a various number of identity-based public keys in different groups or applications while keeping a single decryption key so that the decryption key can decrypt every ciphertexts encrypted with those public keys. Also our scheme removes the use of certificates as well as the key escrow problem so it is functional and practical. Since our public keys are unlinkable, the user's privacy can be protected from attackers who collect and trace the user information and behavior using the known public keys. Furthermore, we suggest a decryption key renewal protocol to strengthen the security of the single decryption key. Finally, we prove the security of our scheme against the adaptive chosen-ciphertext attack under the random oracle model.

Public key broadcast encryption scheme using new converting method

  • Jho, Nam-Su;Yoo, Eun-Sun;Rhee, Man-Young
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.6B
    • /
    • pp.199-206
    • /
    • 2008
  • Broadcast encryption is a cryptographical primitive which is designed for a content provider to distribute contents to only privileged qualifying users through an insecure channel. Anyone who knows public keys can distribute contents by means of public key broadcast encryption whose technique can also be applicable to many other applications. In order to design public key broadcast encryption scheme, it should devise some methods that convert a broadcast encryption scheme based on symmetric key cryptosystem to a public key broadcast encryption. Up to this point, broadcast encryption scheme on trial for converting from symmetric key setting to asymmetric public key setting has been attempted by employing the Hierarchical Identity Based Encryption (HIBE) technique. However, this converting method is not optimal because some of the properties of HIBE are not quite fitting for public key broadcast schemes. In this paper, we proposed new converting method and an efficient public key broadcast encryption scheme Pub-PI which is obtained by adapting the new converting method to the PI scheme [10]. The transmission overhead of the Pub-PI is approximately 3r, where r is the number of revoked users. The storage size of Pub-PI is O($c^2$), where c is a system parameter of PI and the computation cost is 2 pairing computations.

An Efficient Identity-Based Deniable Authenticated Encryption Scheme

  • Wu, Weifeng;Li, Fagen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1904-1919
    • /
    • 2015
  • Deniable authentication protocol allows a sender to deny his/her involvement after the protocol run and a receiver can identify the true source of a given message. Meanwhile, the receiver has no ability to convince any third party of the fact that the message was sent by the specific sender. However, most of the proposed protocols didn't achieve confidentiality of the transmitted message. But, in some special application scenarios such as e-mail system, electronic voting and Internet negotiations, not only the property of deniable authentication but also message confidentiality are needed. To settle this problem, in this paper, we present a non-interactive identity-based deniable authenticated encryption (IBDAE) scheme using pairings. We give the security model and formal proof of the presented IBDAE scheme in the random oracle model under bilinear Diffie-Hellman (BDH) assumption.

A Secure Data Processing Using ID-Based Key Cryptography in Mobile Cloud Computing (모바일 클라우드 컴퓨팅 환경에서 ID-기반 키 암호화를 이용한 안전한 데이터 처리 기술)

  • Cheon, EunHong;Lee, YonSik
    • Convergence Security Journal
    • /
    • v.15 no.5
    • /
    • pp.3-8
    • /
    • 2015
  • Most mobile cloud computing system use public key cryptography to provide data security and mutual authentication. A variant of traditional public key technologies called Identity-Based Cryptography(IBC) has recently received considerable attention. The certificate-free approach of IBC may well match the dynamic qualities of cloud environment. But, there is a need for a lightweight secure framework that provides security with minimum processing overhead on mobile devices. In this paper, we propose to use hierarchical ID-Based Encryption in mobile cloud computing. It is suitable for a mobile network since it can reduce the workload of root Public Key Generators by delegating the privilege of user authentication and private key generation. The Identity-Based Encryption and Identity-Based Signature are also proposed and an ID-Based Authentication scheme is presented to secure data processing. The proposed scheme is designed by one-way hash functions and XOR operations, thus has low computation costs for mobile users.