• Title/Summary/Keyword: Identity-based Encryption

Search Result 80, Processing Time 0.02 seconds

Adaptively Secure Anonymous Identity-based Broadcast Encryption for Data Access Control in Cloud Storage Service

  • Chen, Liqing;Li, Jiguo;Zhang, Yichen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1523-1545
    • /
    • 2019
  • Cloud computing is now a widespread and economical option when data owners need to outsource or share their data. Designing secure and efficient data access control mechanism is one of the most challenging issues in cloud storage service. Anonymous broadcast encryption is a promising solution for its advantages in the respects of computation cost and communication overload. We bring forward an efficient anonymous identity-based broadcast encryption construction combined its application to the data access control mechanism in cloud storage service. The lengths for public parameters, user private key and ciphertext in the proposed scheme are all constant. Compared with the existing schemes, in terms of encrypting and decrypting computation cost, the construction of our scheme is more efficient. Furthermore, the proposed scheme is proved to achieve adaptive security against chosen-ciphertext attack adversaries in the standard model. Therefore, the proposed scheme is feasible for the system of data access control in cloud storage service.

New Constructions of Identity-based Broadcast Encryption without Random Oracles

  • Zhang, Leyou;Wu, Qing;Hu, Yupu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.2
    • /
    • pp.428-439
    • /
    • 2011
  • The main challenge in building efficient broadcast systems is to encrypt messages with short ciphertexts. In this paper, we present a new construction based on the identity. Our construction contains the desirable features, such as constant size ciphertexts and private keys, short public keys and not fixing the total number of possible users in the setup. In addition, the proposed scheme achieves the full security which is stronger than the selective-identity security. Furthermore we show that the proof of security does not rely on the random oracles. To the best our knowledge, it is the first efficient scheme that is full security and achieves constant size ciphertexts and private keys which solve the trade-off between the ciphertext size and the private key size.

Identity-based Threshold Broadcast Encryption in the Standard Model

  • Zhang, Leyou;Hu, Yupu;Wu, Qing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.3
    • /
    • pp.400-410
    • /
    • 2010
  • In an identity-based threshold broadcast encryption (IDTHBE) scheme, a broadcaster chooses a set of n recipients and a threshold value t, and the plaintext can be recovered only if at least t receivers cooperate. IDTHBE scheme is different from the standard threshold public key encryption schemes, where the set of receivers and the threshold value are decided from the beginning. This kind of scheme has wide applications in ad hoc networks. Previously proposed IDTHBE schemes have ciphertexts which contain at least n elements. In addition, the security of theses schemes relies on the random oracles. In this paper, we introduce two new constructions of IDTHBE for ad hoc networks. Our first scheme achieves S-size private keys while the modified scheme achieves constant size private keys. Both schemes achieve approximately (n-t)-size ciphertexts. Furthermore, we also show that they are provablesecurity under the decision bilinear Diffie-Hellman Exponent (BDHE) assumption in the standard model.

A Study on Efficient Data De-Identification Method for Blockchain DID

  • Min, Youn-A
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.60-66
    • /
    • 2021
  • Blockchain is a technology that enables trust-based consensus and verification based on a decentralized network. Distributed ID (DID) is based on a decentralized structure, and users have the right to manage their own ID. Recently, interest in self-sovereign identity authentication is increasing. In this paper, as a method for transparent and safe sovereignty management of data, among data pseudonymization techniques for blockchain use, various methods for data encryption processing are examined. The public key technique (homomorphic encryption) has high flexibility and security because different algorithms are applied to the entire sentence for encryption and decryption. As a result, the computational efficiency decreases. The hash function method (MD5) can maintain flexibility and is higher than the security-related two-way encryption method, but there is a threat of collision. Zero-knowledge proof is based on public key encryption based on a mutual proof method, and complex formulas are applied to processes such as personal identification, key distribution, and digital signature. It requires consensus and verification process, so the operation efficiency is lowered to the level of O (logeN) ~ O(N2). In this paper, data encryption processing for blockchain DID, based on zero-knowledge proof, was proposed and a one-way encryption method considering data use range and frequency of use was proposed. Based on the content presented in the thesis, it is possible to process corrected zero-knowledge proof and to process data efficiently.

ID-Based Proxy Re-encryption Scheme with Chosen-Ciphertext Security (CCA 안전성을 제공하는 ID기반 프락시 재암호화 기법)

  • Koo, Woo-Kwon;Hwang, Jung-Yeon;Kim, Hyoung-Joong;Lee, Dong-Hoon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.1
    • /
    • pp.64-77
    • /
    • 2009
  • A proxy re-encryption scheme allows Alice to temporarily delegate the decryption rights to Bob via a proxy. Alice gives the proxy a re-encryption key so that the proxy can convert a ciphertext for Alice into the ciphertext for Bob. Recently, ID-based proxy re-encryption schemes are receiving considerable attention for a variety of applications such as distributed storage, DRM, and email-forwarding system. And a non-interactive identity-based proxy re-encryption scheme was proposed for achieving CCA-security by Green and Ateniese. In the paper, we show that the identity-based proxy re-encryption scheme is unfortunately vulnerable to a collusion attack. The collusion of a proxy and a malicious user enables two parties to derive other honest users' private keys and thereby decrypt ciphertexts intended for only the honest user. To solve this problem, we propose two ID-based proxy re-encryption scheme schemes, which are proved secure under CPA and CCA in the random oracle model. For achieving CCA-security, we present self-authentication tag based on short signature. Important features of proposed scheme is that ciphertext structure is preserved after the ciphertext is re-encrypted. Therefore it does not lead to ciphertext expansion. And there is no limitation on the number of re-encryption.

The Conversion method from ID-based Encryption to ID-based Dynamic Threshold Encryption (ID기반 암호시스템을 이용하여 ID기반 동적 임계 암호시스템으로 변환하는 방법)

  • Kim, Mi-Lyoung;Kim, Hyo-Seung;Son, Young-Dong;Lee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.4
    • /
    • pp.733-744
    • /
    • 2012
  • Dynamic threshold public-key encryption provides dynamic setting of the group of all users, receivers and the threshold value. Over recent years, there are many studies on the construction of scheme, called ID-based dynamic threshold encryption, which combines the ID-based encryption with dynamic threshold encryption. In this paper, we analyze the ID-based dynamic threshold encryption proposed by Xing and Xu in 2011, and show that their scheme has a structural problem. We propose a conversion method from ID-based encryption which uses the bilinear map to ID-based dynamic threshold encryption. Additionally, we prove this converted scheme has CPA security under the full model.

An Identity-Based Key-Insulated Encryption with Message Linkages for Peer-to-Peer Communication Network

  • Hsu, Chien-Lung;Lin, Han-Yu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2928-2940
    • /
    • 2013
  • Key exposure is a major threat to secure cryptosystems. To mitigate the impact caused by key-compromise attacks, a key-insulated cryptographic mechanism is a better alternative. For securing the large message communication in peer-to-peer networks, in this paper, we propose the first novel identity-based key-insulated encryption (IB-KIE) scheme with message linkages. Our scheme has the properties of unbounded time periods and random-access key-updates. In the proposed scheme, each client can periodically update his private key while the corresponding public one remains unchanged. The essential security assumption of our proposed scheme is based on the well-known bilinear Diffie-Hellman problem (BDHP). To ensure the practical feasibility, we also formally prove that the proposed scheme achieves the security requirement of confidentiality against indistinguishability under adaptive chosen-ciphertext attacks (IND-CCA2) in the random oracle model.

Scalable Hierarchical Identity-based Signature Scheme from Lattices

  • Noh, Geontae;Jeong, Ik Rae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3261-3273
    • /
    • 2013
  • In the paper, we propose a novel adaptively secure hierarchical identity-based signature scheme from lattices. The size of signatures in our scheme is shortest among the existing hierarchical identity-based signature schemes from lattices. Our scheme is motivated by Gentry et al.'s signature scheme and Agrawal et al.'s hierarchical identity-based encryption scheme.

Efficient Multi-receiver Identity-Based Encryption Scheme from Bilinear Pairing (Bilinear Pairing을 이용한 효율적인 신원기반 다중 수신자 암호 기법)

  • Jung, Chae-Duk;Yoon, Suk-Bong;Sur, Chul;Rhee, Kyung-Hyune
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.301-308
    • /
    • 2007
  • In this paper, we propose a new efficient multi-receiver identity-based encryption scheme from Bilinear Pairing. The proposed scheme eliminates pairing computation to encrypt a message for multiple receivers and only need one pairing computation to decrypt the ciphertext. Moreover, we show how to properly transform our scheme into a highly efficient stateless public key broadcast encryption scheme based on the subset-cover framework.

Identity-based Deniable Authenticated Encryption for E-voting Systems

  • Jin, Chunhua;Chen, Guanhua;Zhao, Jianyang;Gao, Shangbing;Yu, Changhui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3299-3315
    • /
    • 2019
  • Deniable authentication (DA) is a protocol in which a receiver can generate an authenticator that is probabilistically indistinguishable from a sender. DA can be applied in many scenarios that require user privacy protection. To enhance the security of DA, in this paper, we construct a new deniable authenticated encryption (DAE) scheme that realizes deniable authentication and confidentiality in a logical single step. Compared with existing approaches, our approach provides proof of security and is efficient in terms of performance analysis. Our scheme is in an identity-based environment; thus, it avoids the public key certificate-based public key infrastructure (PKI). Moreover, we provide an example that shows that our protocol is applicable for e-voting systems.