• Title/Summary/Keyword: Identity Matrix

Search Result 108, Processing Time 0.026 seconds

SOME PERMANENTAL INEQUALITIES

  • Hwang, Suk-Geun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.35-42
    • /
    • 1989
  • Let .ohm.$_{n}$ and Pm $t_{n}$ denote the sets of all n*n doubly stochastic matrices and the set of all n*n permutation matrices respectively. For m*n matrices A=[ $a_{ij}$ ], B=[ $b_{ij}$ ] we write A.leq.B(A$a_{ij}$ .leq. $b_{ij}$ ( $a_{ij}$ < $b_{ij}$ ) for all i=1,..,m; j=1,..,n. Let $I_{n}$ denote the identity matrix of order n, let $J_{n}$ denote the n*n matrix all of whose entries are 1/n, and let $K_{n}$=n $J_{n}$. For a complex square matrix A, the permanent of A is denoted by per A. Let $E_{ij}$ denote the matrix of suitable size all of whose entries are zeros except for the (i,j)-entry which is one.hich is one.

  • PDF

A Study on Blind Channel Equalization Based on Higher-Order Cumulants

  • Han, Soo-Whan
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.6
    • /
    • pp.781-790
    • /
    • 2004
  • This paper presents a fourth-order cumulants based iterative algorithm for blind channel equalization. It is robust with respect to the existence of heavy Gaussian noise in a channel and does not require the minimum phase characteristic of the channel. In this approach, the transmitted signals at the receiver are over-sampled to ensure the channel described by a full-column rank matrix. It changes a single-input/single-output (SISO) finite-impulse response (FIR) channel to a single-input/multi-output (SIMO) channel. Based on the properties of the fourth-order cumulants of the over-sampled channel outputs, the iterative algorithm is derived to estimate the deconvolution matrix which makes the overall transfer matrix transparent, i.e., it can be reduced to the identity matrix by simple reordering and scaling. Both a closed-form and a stochastic version of the proposed algorithm are tested with three-ray multi-path channels in simulation studies, and their performances are compared with a method based on conventional second-order cumulants. Relatively good results are achieved, even when the transmitted symbols are significantly corrupted with Gaussian noise.

  • PDF

Fast Hybrid Transform: DCT-II/DFT/HWT

  • Xu, Dan-Ping;Shin, Dae-Chol;Duan, Wei;Lee, Moon-Ho
    • Journal of Broadcast Engineering
    • /
    • v.16 no.5
    • /
    • pp.782-792
    • /
    • 2011
  • In this paper, we address a new fast DCT-II/DFT/HWT hybrid transform architecture for digital video and fusion mobile handsets based on Jacket-like sparse matrix decomposition. This fast hybrid architecture is consist of source coding standard as MPEG-4, JPEG 2000 and digital filtering discrete Fourier transform, and has two operations: one is block-wise inverse Jacket matrix (BIJM) for DCT-II, and the other is element-wise inverse Jacket matrix (EIJM) for DFT/HWT. They have similar recursive computational fashion, which mean all of them can be decomposed to Kronecker products of an identity Hadamard matrix and a successively lower order sparse matrix. Based on this trait, we can develop a single chip of fast hybrid algorithm architecture for intelligent mobile handsets.

The Usage of an SNP-SNP Relationship Matrix for Best Linear Unbiased Prediction (BLUP) Analysis Using a Community-Based Cohort Study

  • Lee, Young-Sup;Kim, Hyeon-Jeong;Cho, Seoae;Kim, Heebal
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.254-260
    • /
    • 2014
  • Best linear unbiased prediction (BLUP) has been used to estimate the fixed effects and random effects of complex traits. Traditionally, genomic relationship matrix-based (GRM) and random marker-based BLUP analyses are prevalent to estimate the genetic values of complex traits. We used three methods: GRM-based prediction (G-BLUP), random marker-based prediction using an identity matrix (so-called single-nucleotide polymorphism [SNP]-BLUP), and SNP-SNP variance-covariance matrix (so-called SNP-GBLUP). We used 35,675 SNPs and R package "rrBLUP" for the BLUP analysis. The SNP-SNP relationship matrix was calculated using the GRM and Sherman-Morrison-Woodbury lemma. The SNP-GBLUP result was very similar to G-BLUP in the prediction of genetic values. However, there were many discrepancies between SNP-BLUP and the other two BLUPs. SNP-GBLUP has the merit to be able to predict genetic values through SNP effects.

A Hybrid Nonsmooth Nonnegative Matrix Factorization for face representation (다양한 얼굴 표현을 위한 하이브리드 nsNMF 방법)

  • Lee, Sung-Joo;Park, Kang-Ryoung;Kim, Jai-Hie
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.957-958
    • /
    • 2008
  • The human facial appearances vary globally and locally according to identity, pose, illumination, and expression variations. In this paper, we propose a hybrid-nonsmooth nonnegative matrix factorization (hybrid-nsNMF) based appearance model to represent various facial appearances which vary globally and locally. Instead of using single smooth matrix in nsNMF, we used two different smooth matrixes and combine them to extract global and local basis at the same time.

  • PDF

Low Pilot Ratio Channel Estimation for OFDM Systems Based on GCE-BEM

  • Wang, Lidong;Lim, Dong-Min
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.4
    • /
    • pp.195-200
    • /
    • 2007
  • Doubly-selective channel estimator for orthogonal frequency division multiplexing(OFDM) systems is proposed in this paper. Based on the generalized complex exponential basis expansion model(GCE-BEM), we describe the time-variant channel with time-invariant coefficients over multiple OFDM blocks. The time variation of the channel destroys the orthogonality between subcarriers, and the resulting channel matrix in the frequency domain is no longer diagonal, but the main interference comes from the near subcarriers. Based on this, we propose a channel estimator with low pilot ratio. We first develop a least-square(LS) estimator under the assumption that only the maximum Doppler frequency and the channel order are known at the receiver, and then verify that the correlation matrix of inter-channel interference(ICI) is a scaled identity matrix based on which we derive an optimal pilot insertion scheme for the LS estimator in the sense of minimum mean square error. The proposed estimator has the advantages of low pilot ratio and robustness against inter-carrier interference.

MATRIX RINGS AND ITS TOTAL RINGS OF FRACTIONS

  • Lee, Sang-Cheol
    • Honam Mathematical Journal
    • /
    • v.31 no.4
    • /
    • pp.515-527
    • /
    • 2009
  • Let R be a commutative ring with identity. Then we prove $M_n(R)=GL_n(R)$ ${\cup}${$A{\in}M_n(R)\;{\mid}\;detA{\neq}0$ and det $A{\neq}U(R)$}${\cup}Z(M-n(R))$ where U(R) denotes the set of all units of R. In particular, it will be proved that the full matrix ring $M_n(F)$ over a field F is the disjoint union of the general linear group $GL_n(F)$ of degree n over the field F and the set $Z(M_n(F))$ of all zero-divisors of $M_n(F)$. Using the result and universal mapping property we prove that $M_n(F)$ is its total ring of fractions.

Blind channel equalization using fourth-order cumulants and a neural network

  • Han, Soo-whan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.13-20
    • /
    • 2005
  • This paper addresses a new blind channel equalization method using fourth-order cumulants of channel inputs and a three-layer neural network equalizer. The proposed algorithm is robust with respect to the existence of heavy Gaussian noise in a channel and does not require the minimum-phase characteristic of the channel. The transmitted signals at the receiver are over-sampled to ensure the channel described by a full-column rank matrix. It changes a single-input/single-output (SISO) finite-impulse response (FIR) channel to a single-input/multi-output (SIMO) channel. Based on the properties of the fourth-order cumulants of the over-sampled channel inputs, the iterative algorithm is derived to estimate the deconvolution matrix which makes the overall transfer matrix transparent, i.e., it can be reduced to the identity matrix by simple recordering and scaling. By using this estimated deconvolution matrix, which is the inverse of the over-sampled unknown channel, a three-layer neural network equalizer is implemented at the receiver. In simulation studies, the stochastic version of the proposed algorithm is tested with three-ray multi-path channels for on-line operation, and its performance is compared with a method based on conventional second-order statistics. Relatively good results, withe fast convergence speed, are achieved, even when the transmitted symbols are significantly corrupted with Gaussian noise.

Identity Based Proxy Re-encryption Scheme under LWE

  • Yin, Wei;Wen, Qiaoyan;Li, Wenmin;Zhang, Hua;Jin, Zheng Ping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.6116-6132
    • /
    • 2017
  • The proxy re-encryption allows an intermediate proxy to convert a ciphertext for Alice into a ciphertext for Bob without seeing the original message and leaking out relevant information. Unlike many prior identity based proxy re-encryption schemes which are based on the number theoretic assumptions such as large integer factorization and discrete logarithm problem. In this paper, we first propose a novel identity based proxy re-encryption scheme which is based on the hardness of standard Learning With Error(LWE) problem and is CPA secure in the standard model. This scheme can be reduced to the worst-case lattice hard problem that is able to resist attacks from quantum algorithm. The key step in our construction is that the challenger how to answer the private query under a known trapdoor matrix. Our scheme enjoys properties of the non-interactivity, unidirectionality, anonymous and so on. In this paper, we utilize primitives include G-trapdoor for lattice and sample algorithms to realize simple and efficient re-encryption.