• 제목/요약/키워드: Identification modelling

검색결과 93건 처리시간 0.023초

개선된 퍼지 모형화 기법에 의한 퍼지 제어 (Fuzzy Control Using A Modified Fuzzy Modelling)

  • 이상용;서진헌
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 추계학술대회 논문집 학회본부
    • /
    • pp.349-352
    • /
    • 1991
  • Fuzzy modelling is a useful method when the variation of plant dynamics is large. In the fuzzy modelling by parameter identification, a new method is proposed in the part of premise parameters identification and in expanding MISO system into MIMO system. Using the proposed method, a fuzzy model of the drum boiler of the thermal power plant can be derived. In addition, feedwater control of the drum by fuzzy controller using the fuzzy model, is simulated.

  • PDF

THE PROBLEMS OF MODELLING AND IDENTIFICATION OF SOURCES OF NOISE IN MACHINES

  • Zbigniew Dabrowski;Stanilaw Radkowski
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1994년도 FIFTH WESTERN PACIFIC REGIONAL ACOUSTICS CONFERENCE SEOUL KOREA
    • /
    • pp.758-763
    • /
    • 1994
  • The work discusses the problems of modelling of the process of acoustic signal generation in machines. We have pointed out that in the task of minimizing of both moise and vibration, the key problem is identification of sources and paths of propagation, both in terms of their location and of definition of their characteristic features. Properly conducted identification makes possible the use of relatively simple mathematical models and this fact is particularly important for a broad application of the proposed methods in practice.

  • PDF

Numerical and experimental verifications on damping identification with model updating and vibration monitoring data

  • Li, Jun;Hao, Hong;Fan, Gao;Ni, Pinghe;Wang, Xiangyu;Wu, Changzhi;Lee, Jae-Myung;Jung, Kwang-Hyo
    • Smart Structures and Systems
    • /
    • 제20권2호
    • /
    • pp.127-137
    • /
    • 2017
  • Identification of damping characteristics is of significant importance for dynamic response analysis and condition assessment of structural systems. Damping is associated with the behavior of the energy dissipation mechanism. Identification of damping ratios based on the sensitivity of dynamic responses and the model updating technique is investigated with numerical and experimental investigations. The effectiveness and performance of using the sensitivity-based model updating method and vibration monitoring data for damping ratios identification are investigated. Numerical studies on a three-dimensional truss bridge model are conducted to verify the effectiveness of the proposed approach. Measurement noise effect and the initial finite element modelling errors are considered. The results demonstrate that the damping ratio identification with the proposed approach is not sensitive to the noise effect but could be affected significantly by the modelling errors. Experimental studies on a steel planar frame structure are conducted. The robustness and performance of the proposed damping identification approach are investigated with real measured vibration data. The results demonstrate that the proposed approach has a decent and reliable performance to identify the damping ratios.

철도차량 외부소음 예측을 위한 음원모델에 관한 고찰 (Investigation of Source Modelling for External Noise Prediction of Railway Vehicles)

  • 김종년
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.1069-1077
    • /
    • 2009
  • For external noise prediction of railway vehicles, sophisticated individual source modelling as well as appropriate noise propagation model from the sources is necessary to ensure the accuracy of the predicted results and contributions of each equipment to the overall noise levels. Accurate and reasonable identification procedures of sound sources of equipment including source strength, directivity and positions installed in the train play an important role in a prediction model, since it is not easy to establish a simple model for the sources with a single rule due to the complexity of source characteristics of equipment in size and directivity pattern. This paper guidelines practical considerations for identification of noise sources in railway vehicles including typical source characteristics of several sub-systems that emits noise to the environment, particularly for electric multiple unit(EMU), and verify effectiveness of assumptions used in the modelling of equipment by measurement with a simple part. The predicted external noise level of a complete train using Exnoise, which was developed by Hyundai-Rotem and has been verified in the a lot of field-tests, incorporating source modelling considered in this paper shows close correlation with the measured ones.

  • PDF

최적 구조 신경 회로망을 이용한 선박용 안정화 위성 안테나 시스템의 모델링 (Modelling of a Shipboard Stabilized Satellite Antenna System Using an Optimal Neural Network Structure)

  • 김민정;황승욱
    • 한국항해항만학회지
    • /
    • 제28권5호
    • /
    • pp.435-441
    • /
    • 2004
  • 본 논문은 비선형성을 많이 내포하고 있어 수학적으로 모델링 하기 어려운 선박용 안정화 위성 안테나 시스템을 모델링하기 위해서, 신경 회로망의 오차 및 응답시간을 최소로 하는 최적 구조 신경 회로망 모델을 도출하고 이를 적용하고자 한다. 오차와 응답시간을 최소화하기 위해 유전알고리즘을 이용하여 신경 회로망 구조를 설계하였다. 안테나 시스템으로부터 얻어진 입출력 데이터에 거하여 본 논문에서 제안한 식별기를 이용하여 안테나 시스템을 식별하였으며, 실제 선박의 운동 성분에 대해서도 시스템을 잘 표현할 수 있는 최적 구조 신경 회로 기반 시스템 식별기를 얻을 수 있었다. 실제 실험을 통해서, 최적 신경회로망 구조가 안테나 시스템 식별에 효과적인 것을 알 수 있었다.

AUTOMATIC IDENTIFICATION OF ROOF TYPES AND ROOF MODELING USING LIDAR

  • Kim, Heung-Sik;Chang, Hwi-Jeong;Cho, Woo-Sug
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.83-86
    • /
    • 2005
  • This paper presents a method for point-based 3D building reconstruction using LiDAR data and digital map. The proposed method consists of three processes: extraction of building roof points, identification of roof types, and 3D building reconstruction. After extracting points inside the polygon of building, the ground surface, wall and tree points among the extracted points are removed through the filtering process. The filtered points are then fitted into the flat plane using ODR(Orthogonal Distance Regression). If the fitting error is within the predefined threshold, the surface is classified as a flat roof. Otherwise, the surface is fitted and classified into a gable or arch roof through RMSE analysis. Based on the roof types identified in automated fashion, the 3D building reconstruction is performed. Experimental results showed that the proposed method classified successfully three different types of roof and that the fusion of LiDAR data and digital map could be a feasible method of modelling 3D building reconstruction.

  • PDF

GMDH 알고리즘을 이용한 모델링 및 제어에 관한 연구 (A Study onthe Modelling and control Using GMDH Algorithm)

  • 최종헌;홍연찬
    • 한국지능시스템학회논문지
    • /
    • 제7권3호
    • /
    • pp.65-71
    • /
    • 1997
  • 신경 회로망의 출현으로 비선형 시스템 모델링에 대한 관힘이 다시 고조되고 있다. 따라서 본 논문에서는 미지의 비선형 시스템을 동적으로 인식하기 위해 GMDH(Group Method of Data Handling) 일고리즘을 사용한 DPNN(Dynamic Polynomial Neural Network)을 제안한다. GMDH를 사용한 동적 시스템의 인신은 일렬의 입/출력 데이타를 인가하여 필요한 계수들의 집합을 동적으로 산출함으로써 훈련시킨다. 또한 DPNN을 이용하여 비선형 시스템을 제어하기 위해, MRA(Model Reference Adaptive Control)를 설계한다. 결과에서 컴퓨터 시뮬레이션을 통해 DPNN을 사용한 모델링과 제어가 잘 수행됨을 알 수 있었다.

  • PDF

A study on hydrodynamic coefficients estimation of modelling ship using system identification method

  • Kim, Dae-Won;Benedict, Knud;Paschen, Mathias
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권10호
    • /
    • pp.935-941
    • /
    • 2016
  • Predicting and evaluating ship manoeuvring characteristics are very important not only for the design stage, but also for the existing vessels. There are several ways to predict ship's manoeuvrability and most of them are highly connected with the estimation of hydrodynamic coefficients. This paper presents a new estimation method using the system identification with mathematical algorithms for estimating hydrodynamic coefficient in the ship's mathematical model. Specifically a double ended ferry which equips four azimuth propulsion systems were chosen as benchmark ship and a set of benchmark data which is generated in the fast time simulation software was provided to conduct mathematical optimization process. Also the initial values for the optimization were borrowed from the empirical regression formulas of the simulation software of Rheinmetall Defence ship simulator. Therefore the newly suggested mathematical optimization algorithm gave a successful result for estimation hydrodynamic coefficients. Proper optimization conditions of the objective function and constraints were also verified during the study.

Load Modeling based on System Identification with Kalman Filtering of Electrical Energy Consumption of Residential Air-Conditioning

  • Patcharaprakiti, Nopporn;Tripak, Kasem;Saelao, Jeerawan
    • International journal of advanced smart convergence
    • /
    • 제4권1호
    • /
    • pp.45-53
    • /
    • 2015
  • This paper is proposed mathematical load modelling based on system identification approach of energy consumption of residential air conditioning. Due to air conditioning is one of the significant equipment which consumes high energy and cause the peak load of power system especially in the summer time. The demand response is one of the solutions to decrease the load consumption and cutting peak load to avoid the reservation of power supply from power plant. In order to operate this solution, mathematical modelling of air conditioning which explains the behaviour is essential tool. The four type of linear model is selected for explanation the behaviour of this system. In order to obtain model, the experimental setup are performed by collecting input and output data every minute of 9,385 BTU/h air-conditioning split type with $25^{\circ}C$ thermostat setting of one sample house. The input data are composed of solar radiation ($W/m^2$) and ambient temperature ($^{\circ}C$). The output data are power and energy consumption of air conditioning. Both data are divided into two groups follow as training data and validation data for getting the exact model. The model is also verified with the other similar type of air condition by feed solar radiation and ambient temperature input data and compare the output energy consumption data. The best model in term of accuracy and model order is output error model with 70.78% accuracy and $17^{th}$ order. The model order reduction technique is used to reduce order of model to seven order for less complexity, then Kalman filtering technique is applied for remove white Gaussian noise for improve accuracy of model to be 72.66%. The obtained model can be also used for electrical load forecasting and designs the optimal size of renewable energy such photovoltaic system for supply the air conditioning.

IDENTIFICATION OF FALSIFIED DRUGS USING NEAR-INFRARED SPECTROSCOPY

  • Scafi, Sergio H.F.;Pasquini, Celio
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.3112-3112
    • /
    • 2001
  • Near-Infrared Spectroscopy (NIRS) was investigated aiming at the identification of falsified drugs. The identification is based on comparison of the NIR spectrum of a sample with a typical spectra of an authentic drug using multivariate modelling and classification algorithms (PCA/SIMCA). Two spectrophotometers (Brimrose - Luminar 2000 and 2030), based on acoustic-optical filter (AOTF) technology, sharing the same controlling computer, software (Brimrose - Snap 2.03) and the data acquisition electronics, were employed. The Luminar 2000 scans the range 850 1800 nm and was employed for transmitance/absorbance measurements of liquids with a transflectance optical bundle probe with total optical path of 5 mm and a circular area of 0.5 $\textrm{cm}^2$. Model 2030 scans the rage 1100 2400 nm and was employed for reflectance measurement of solids drugs. 300 spectra, acquired in about 20 s, were averaged for each sample. Chemometric treatment of the spectral data, modelling and classification were performed by using the Unscrambler 7.5 software (CAMO Norway). This package provides the Principal Component Analysis (PCA) and SIMCA algorithms, used for modelling and classification, respectively. Initially, NIRS was evaluated for spectrum acquisition of various drugs, selected in order to accomplish the diversity of physico-chemical characteristics found among commercial products. Parameters which could affect the spectra of a given drug (especially if presented as solid tablets) were investigated and the results showed that the first derivative can minimize spectral changes associated with tablet geometry, physical differences in their faces and position in relation to the probe beam. The effect of ambient humidity and temperature were also investigated. The first factor needs to be controlled for model construction because the ambient humidity can cause spectral alterations that should cause the wrong classification of a real drug if the factor is not considered by the model.

  • PDF