• 제목/요약/키워드: Identification(or Recognition)

검색결과 218건 처리시간 0.027초

A New Bank-card Number Identification Algorithm Based on Convolutional Deep Learning Neural Network

  • Shi, Rui-Xia;Jeong, Dong-Gyu
    • International journal of advanced smart convergence
    • /
    • 제11권4호
    • /
    • pp.47-56
    • /
    • 2022
  • Recently bank card number recognition plays an important role in improving payment efficiency. In this paper we propose a new bank-card number identification algorithm. The proposed algorithm consists of three modules which include edge detection, candidate region generation, and recognition. The module of 'edge detection' is used to obtain the possible digital region. The module of 'candidate region generation' has the role to expand the length of the digital region to obtain the candidate card number regions, i.e. to obtain the final bank card number location. And the module of 'recognition' has Convolutional deep learning Neural Network (CNN) to identify the final bank card numbers. Experimental results show that the identification rate of the proposed algorithm is 95% for the card numbers, which shows 20% better than that of conventional algorithm or method.

Transformation Based Walking Speed Normalization for Gait Recognition

  • Kovac, Jure;Peer, Peter
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권11호
    • /
    • pp.2690-2701
    • /
    • 2013
  • Humans are able to recognize small number of people they know well by the way they walk. This ability represents basic motivation for using human gait as the means for biometric identification. Such biometric can be captured at public places from a distance without subject's collaboration, awareness or even consent. Although current approaches give encouraging results, we are still far from effective use in practical applications. In general, methods set various constraints to circumvent the influence factors like changes of view, walking speed, capture environment, clothing, footwear, object carrying, that have negative impact on recognition results. In this paper we investigate the influence of walking speed variation to different visual based gait recognition approaches and propose normalization based on geometric transformations, which mitigates its influence on recognition results. With the evaluation on MoBo gait dataset we demonstrate the benefits of using such normalization in combination with different types of gait recognition approaches.

최적화된 관측 신뢰도와 변형된 HMM 디코더를 이용한 잡음에 강인한 화자식별 시스템 (A Robust Speaker Identification Using Optimized Confidence and Modified HMM Decoder)

  • ;김진영;나승유
    • 대한음성학회지:말소리
    • /
    • 제64호
    • /
    • pp.121-135
    • /
    • 2007
  • Speech signal is distorted by channel characteristics or additive noise and then the performances of speaker or speech recognition are severely degraded. To cope with the noise problem, we propose a modified HMM decoder algorithm using SNR-based observation confidence, which was successfully applied for GMM in speaker identification task. The modification is done by weighting observation probabilities with reliability values obtained from SNR. Also, we apply PSO (particle swarm optimization) method to the confidence function for maximizing the speaker identification performance. To evaluate our proposed method, we used the ETRI database for speaker recognition. The experimental results showed that the performance was definitely enhanced with the modified HMM decoder algorithm.

  • PDF

얼굴과 발걸음을 결합한 인식 (Fusion algorithm for Integrated Face and Gait Identification)

  • Nizami, Imran Fareed;Hong, Sug-Jun;Lee, Hee-Sung;Ann, Toh-Kar;Kim, Eun-Tai;Park, Mig-Non
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.15-18
    • /
    • 2007
  • Identification of humans from multiple view points is an important task for surveillance and security purposes. For optimal performance the system should use the maximum information available from sensors. Multimodal biometric systems are capable of utilizing more than one physiological or behavioral characteristic for enrollment, verification, or identification. Since gait alone is not yet established as a very distinctive feature, this paper presents an approach to fuse face and gait for identification. In this paper we will use the single camera case i.e. both the face and gait recognition is done using the same set of images captured by a single camera. The aim of this paper is to improve the performance of the system by utilizing the maximum amount of information available in the images. Fusion is considered at decision level. The proposed algorithm is tested on the NLPR database.

  • PDF

A Multi-Scale Parallel Convolutional Neural Network Based Intelligent Human Identification Using Face Information

  • Li, Chen;Liang, Mengti;Song, Wei;Xiao, Ke
    • Journal of Information Processing Systems
    • /
    • 제14권6호
    • /
    • pp.1494-1507
    • /
    • 2018
  • Intelligent human identification using face information has been the research hotspot ranging from Internet of Things (IoT) application, intelligent self-service bank, intelligent surveillance to public safety and intelligent access control. Since 2D face images are usually captured from a long distance in an unconstrained environment, to fully exploit this advantage and make human recognition appropriate for wider intelligent applications with higher security and convenience, the key difficulties here include gray scale change caused by illumination variance, occlusion caused by glasses, hair or scarf, self-occlusion and deformation caused by pose or expression variation. To conquer these, many solutions have been proposed. However, most of them only improve recognition performance under one influence factor, which still cannot meet the real face recognition scenario. In this paper we propose a multi-scale parallel convolutional neural network architecture to extract deep robust facial features with high discriminative ability. Abundant experiments are conducted on CMU-PIE, extended FERET and AR database. And the experiment results show that the proposed algorithm exhibits excellent discriminative ability compared with other existing algorithms.

Adaptive Cross-Device Gait Recognition Using a Mobile Accelerometer

  • Hoang, Thang;Nguyen, Thuc;Luong, Chuyen;Do, Son;Choi, Deokjai
    • Journal of Information Processing Systems
    • /
    • 제9권2호
    • /
    • pp.333-348
    • /
    • 2013
  • Mobile authentication/identification has grown into a priority issue nowadays because of its existing outdated mechanisms, such as PINs or passwords. In this paper, we introduce gait recognition by using a mobile accelerometer as not only effective but also as an implicit identification model. Unlike previous works, the gait recognition only performs well with a particular mobile specification (e.g., a fixed sampling rate). Our work focuses on constructing a unique adaptive mechanism that could be independently deployed with the specification of mobile devices. To do this, the impact of the sampling rate on the preprocessing steps, such as noise elimination, data segmentation, and feature extraction, is examined in depth. Moreover, the degrees of agreement between the gait features that were extracted from two different mobiles, including both the Average Error Rate (AER) and Intra-class Correlation Coefficients (ICC), are assessed to evaluate the possibility of constructing a device-independent mechanism. We achieved the classification accuracy approximately $91.33{\pm}0.67%$ for both devices, which showed that it is feasible and reliable to construct adaptive cross-device gait recognition on a mobile phone.

이동 로봇을 위한 3차원 거리 측정 장치기반 비포장 도로 인식 (3D Depth Measurement System-based Unpaved Trail Recognition for Mobile Robots)

  • 김성찬;김종만;김형석
    • 제어로봇시스템학회논문지
    • /
    • 제12권4호
    • /
    • pp.395-399
    • /
    • 2006
  • A method to recognize unpaved road region using a 3D depth measurement system is proposed for mobile robots. For autonomous maneuvering of mobile robots, recognition of obstacles or recognition of road region is the essential task. In this paper, the 3D depth measurement system which is composed of a rotating mirror, a line laser and mono-camera is employed to detect depth, where the laser light is reflected by the mirror and projected to the scene objects whose locations are to be determined. The obtained depth information is converted into an image. Such depth images of the road region represent even and plane while that of off-road region is irregular or textured. Therefore, the problem falls into a texture identification problem. Road region is detected employing a simple spatial differentiation technique to detect the plain textured area. Identification results of the diverse situation of unpaved trail are included in this paper.

모바일 보안을 위한 모바일 폰 영상의 손 생체 정보 인식 시스템 (Hand Biometric Information Recognition System of Mobile Phone Image for Mobile Security)

  • 홍경호;정은화
    • 디지털융복합연구
    • /
    • 제12권4호
    • /
    • pp.319-326
    • /
    • 2014
  • 모바일 보안의 증가에 따라, 지식에 근거한 사용자 이름, 패스워드 방식의 개인 인증에 대한 실패를 경험한 사용자들은 개인 식별과 인증에서 손 형상, 지문 인식, 목소리와 같은 생체 정보를 사용하는 것을 더욱 선호하게 되었다. 그러므로 모바일 보안을 위해 개인 식별과 인증에서 생체 인증을 사용하는 것은 인터넷 상에서 고객과 판매자들 모두에게 신뢰성을 준다. 본 연구는 개인 식별과 인증을 위해 iphone4와 galaxy s2의 모바일 폰 영상으로부터 손형상, 손 바닥 특징, 손가락 길이와 너비 등의 손 생체 정보를 인식하는 시스템을 개발한다. 본 연구의 손 생체 정보인식 시스템은 영상 획득, 전처리, 잡음 제거, 표준 특징패턴 추출, 개별 특징패턴 추출 그리고 손 생체 정보 인식의 6가지 단계로 구성한다. 실험에서 사용한 입력 데이터는 50명의 실험자의 손 형상 영상과 손 바닥 영상으로 구성한 250장의 데이터에 대한 평균 인식률은 93.5%이다.

숫자인식을 이용한 성인인증기 개발 (Development of Adult Authentication System using Numeral Recognition)

  • 김갑순;박중조
    • 한국정밀공학회지
    • /
    • 제19권12호
    • /
    • pp.100-108
    • /
    • 2002
  • This paper describes the development of adult authentication system using numerical recognition. Nowadays, the automats are very popular and they are dealing in many item suck as coffee, soft drinks, alcoholic drinks and cigarettes, etc. Among these items, some are harmful to the minor, and so the sale of these to the minor must be prohibited. In relation to this, adult authentication system is required to be equipped to the automat which deals in items harmful to minor. According to these demands, we develop the adult authentication system. This system capture the image of a residence certificate card by the identification card-reader, and recognize its numbers and identify it as adult or minor by main computer, where numeral recognition is accomplished by using image processing methods and neural network recognizer. The characteristic test of the system is carried out, and its result reveals that the system has the error of less than 1%. Thus, It is thought that the system can be used for identifying adult in the automats.

The User Identification System Using Walking Pattern over the ubiFloor

  • Yun, Jae-Seok;Lee, Seung-Hun;Woo, Woon-Tack;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1046-1050
    • /
    • 2003
  • In general, conventional user identification systems require users to carry a TAG or badge or to remember ID and password. Though biometric identification systems may relieve these problems, they are susceptible to environmental noise to some degree. We propose a natural user identification system, ubiFloor, exploiting user's walking pattern to identify the user. The system identifies a user, while tracking the user's location, with a set of simple ON/OFF switch sensors or equipments. Experimental results show that the proposed system can recognize the registered users at the rate of 92%. Future improvement in recognition rate may be achieved by combining other sensors such as camera, microphone, etc.

  • PDF