• 제목/요약/키워드: Ice-breaking

검색결과 46건 처리시간 0.026초

A prediction method of ice breaking resistance using a multiple regression analysis

  • Cho, Seong-Rak;Lee, Sungsu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권4호
    • /
    • pp.708-719
    • /
    • 2015
  • The two most important tasks of icebreakers are first to secure a sailing route by breaking the thick sea ice and second to sail efficiently herself for purposes of exploration and transportation in the polar seas. The resistance of icebreakers is a priority factor at the preliminary design stage; not only must their sailing efficiency be satisfied, but the design of the propulsion system will be directly affected. Therefore, the performance of icebreakers must be accurately calculated and evaluated through the use of model tests in an ice tank before construction starts. In this paper, a new procedure is developed, based on model tests, to estimate a ship's ice breaking resistance during continuous ice-breaking in ice. Some of the factors associated with crushing failures are systematically considered in order to correctly estimate her ice-breaking resistance. This study is intended to contribute to the improvement of the techniques for ice resistance prediction with ice breaking ships.

두꺼운 해빙에 대한 충격쇄빙 시 빙하중 신호 분석 (An Analysis on Ice Load Signals Measured from Repetitive Ramming in Heavy Ice Condition)

  • 안세진;이탁기;최경식
    • 대한조선학회논문집
    • /
    • 제55권4호
    • /
    • pp.306-312
    • /
    • 2018
  • To navigate in ice-covered waters, the ice-breaking process is required. The ice-breaking mode depends on material properties of sea ice and ice conditions. The ice-breaking mode is classified into ramming and continuous ice-breaking. The ramming is effective on large ice features, such as thick ice ridge and icebergs, and the continuous ice-breaking is on level ice. In general, the impact time duration of crushing or bending on ice sheets is from 0.2 to 1.0 second. However, impact duration in ramming will be increased. The Korean ice-breaking research vessel ARAON conducted her research voyage in the Antarctic sea during the winter of 2012. The IBRV ARAON measured strain in ramming and continuous ice-breaking. Strain gauge signals were recorded during the planned ice-breaking performance and the unplanned ice transits in heavy ice conditions. The aim of this study is to investigate the ice load signals measured in ramming processes under the heavy ice condition. Based on the time history of the signals, a raising time, a half-decaying time and time duration were investigated and compared with the previous study which was suggested the five profiles of the ice load signals.

Study on sloshing simulation in the independent tank for an ice-breaking LNG carrier

  • Ding, Shifeng;Wang, Gang;Luo, Qiuming
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.667-679
    • /
    • 2020
  • As the LNG carrier operates in ice covered waters, it is key to ensure the overall safety, which is related to the coupling effect of ice-breaking process and internal liquid sloshing. This paper focuses on the sloshing simulation of the ice-breaking LNG carrier, and the numerical method is proposed using Circumferential Crack Method (CCM) and Volume of Vluid (VOF) with two main key factors (velocity νx and force Fx). The ship motion analysis is carried out by CCM when the ship navigates in the ice-covered waters with a constant propulsion power. The velocity νx is gained, which is the initial excitation condition for the calculation of internal sloshing force Fx. Then, the ship motion is modified based on iterative computations under the union action of ice-breaking force and liquid sloshing load. The sloshing simulation under the LNG tank is studied with the modified ship motion. Moreover, an ice-breaking LNG ship with three-leaf type tank is used for case study. The internal LNG sloshing is simulated with three different liquid heights, including free surface shape and sloshing pressure distribution at a given moment, pressure curves at monitoring points on the bulkhead. This present method is effective to solve the sloshing simulation during ice-breaking process, which could be a good reference for the design of the polar ice-breaking LNG carrier.

빙해선박의 선수 선형에 관한 연구 (A Study on the Bow Shape of Ice Breaking Vessel)

  • 김현수;이춘주
    • 대한조선학회논문집
    • /
    • 제47권3호
    • /
    • pp.469-475
    • /
    • 2010
  • The operation scenarios, types of ice, draft and propulsion system are important design point on the beginning stage of the ice breaking vessel. The concept of hull form in ice breaking vessel has to compromise the performance according to the operation route especially if ship is operating in ice and ice free water. The several hull forms were proposed to optimize the capability of the vessel in this paper. The effect of hull form according to type of ice is also discussing and explaining the ice resistance in each ice type as like pack ice, brash ice, level ice, rubble ice and ice ridge. The draft effect was examined and propulsion system for example FPP(Fixed pitch propeller), CPP(Controllable pitch propeller) and POD system was compared focusing on the propulsion efficiency.

빙해지역 일반 운항 및 쇄빙 운항 시의 빙하중 특성 비교 연구 (A Comparative Study on Ice Load Characteristics between General and Ice-breaking Operations in Ice-covered Waters)

  • 이민우;권용현;임채환;이탁기
    • 한국해양공학회지
    • /
    • 제29권1호
    • /
    • pp.28-33
    • /
    • 2015
  • The icebreaking research vessel ARAON had her second ice trial in the Arctic Ocean from July 16 to August 12, 2010. In this study, the ice loads measured during the “general” operation and “ice breaking” operation in ice-covered waters were analyzed and compared. Whereas the “general” operation stands for the voyage in the water partially covered by ice, the “ice breaking” operation involved substantial ice floes for the ice breaking performance test. Based on the measured data, comparisons of the relationship between the ship speed and ice load, and between the locations of strain gauges and ice loads were investigated. Peak stresses higher than 20 MPa were found. The longitudinal and vertical correlations between the measurement location and ice load were analyzed, and the probability of peak stress was calculated. As a result, the probability function for higher ice loads during both operation modes was expressed in an exponential and power forms.

실해역 해빙 크기에 따른 Araon호의 쇄빙성능 비교연구 (Comparative Study of Ice Breaking Performance according to Scale of Sea Ice on Ice Field)

  • 이춘주;김현수;최경식
    • 한국해양공학회지
    • /
    • 제28권1호
    • /
    • pp.28-33
    • /
    • 2014
  • The Korean icebreaking research vessel "Araon" performed four sea trials in the Arctic and Antarctic Seas. The ice properties, such as the ice thickness, floe size, ice strength, and power of the vessel were quite different in these trials. To compare the speeds of ship with the same ice strength and power, the AARC (Arker Arctic Research Center) method is used with a vessel power of 10 MW and an ice strength of 630 Pa in this paper. Based on the analysis results, the speed of the ship was 1.62 knots (0.83 m/s) with a 1.02-m ice thickness and 2.5-km floe size, 5.3 knots (2.73 m/s) with a 1.2-m ice thickness and 1.0-km floe size, and 13.8 knots (7.10 m/s) with a 1.1-m ice thickness and 200-m floe size. The analysis results showed that the ship speed and floe size have an inversely proportional relationship. Two reasonable reasons are given in this paper for the final result. One is an ice breaking phenomenon, and the other is the effect of the ice floe mass. For the breaking phenomenon, the ice breaking force is very small because the ice floe is not breaking but tearing when a ship is passing through a small ice floe. Regarding the effect of the ice floe mass, it is impossible for a ship to push and tear an ice floe if the mass of the ice floe is too large compared to the mass of the ship. The velocity of the ship decreases when the ice floe has a large mass and a large size because the ship has to break the ice floe to move forward.

쇄빙시뮬레이션을 위한 반해석적 빙하중 계산법 고찰 (Study on the Semi-Analytical Ice Load Calculation Methods for the Ice-Breaking Simulation)

  • 김정환;장범선;김유일
    • 대한조선학회논문집
    • /
    • 제57권6호
    • /
    • pp.353-364
    • /
    • 2020
  • This paper presents the semi-analytical ice load calculation methods that are useful to simulate the ice-breaking process. Since the semi-analytical methods rely on the previously developed closed form equations or numerical analysis results, the user's exact understanding for the equations must be supported in order to use the methods properly. In this study, various failure modes of ice such as local crushing, in-plane splitting failure, out-of-plane bending failure and radial or circumferential cracking with rotation of the broken ice floe are considered. Based on the presented methods, the fracture modes were evaluated according to the size and thickness of ice. In addition, time series analysis for the ice-breaking process was performed on several ice conditions and the results were analyzed.

빙마찰계수에 따른 쇄빙탱커의 빙저항 변화 (Change of Ice Resistance of Ice-Breaking Tanker According to Frictional Coefficient)

  • 조성락;이승수;이용철;염종길;장진호
    • 대한조선학회논문집
    • /
    • 제58권3호
    • /
    • pp.175-181
    • /
    • 2021
  • This study describes the model tests in ice according to the frictional coefficient of an ice-breaking ship and the change in ice resistance by the analysis method for each component of ice resistances. The target vessel is a 90K DWT ice-breaking tanker capable of operating in ARC7 ice conditions in the Arctic Ocean, and twin POD propellers are fitted. The hull was specially painted with four different frictional coefficients on the same ship model. The total ice resistance can be separated by ice breaking, ice buoyancy, ice clearing resistances through the tests in level ice, pre-sawn ice and creep test in pre-sawn ice under sea ice thickness of 1.2 m and 1.7 m. Ice resistance was analyzed by correcting the thickness and bending strength of model ice by the ITTC correction method. As the frictional coefficient between the hull and ice increases, ice buoyancy and clearing resistances increase significantly. When the surface of the hull is rough, it is considered that the broken ice pieces do not slip easily to the side, resulting in an increase in ice buoyancy resistance. Also, the frictional coefficient was found to have a great influence on the ice clearing resistance as the ice thickness became thicker.

A numerical study on ice failure process and ice-ship interactions by Smoothed Particle Hydrodynamics

  • Zhang, Ningbo;Zheng, Xing;Ma, Qingwei;Hu, Zhenhong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.796-808
    • /
    • 2019
  • In this paper, a Smoothed Particle Hydrodynamics (SPH) method is extended to simulate the ice failure process and ice-ship interactions. The softening elastoplastic model integrating Drucker-Prager yield criterion is embedded into the SPH method to simulate the failure progress of ice. To verify the accuracy of the proposed SPH method, two benchmarks are presented, which include the elastic vibration of a cantilever beam and three-point bending failure of the ice beam. The good agreement between the obtained numerical results and experimental data indicates that the presented SPH method can give the reliable and accurate results for simulating the ice failure progress. On this basis, the extended SPH method is employed to simulate level ice interacting with sloping structure and three-dimensional ice-ship interaction in level ice, and the numerical data is validated through comparing with experimental results of a 1:20 scaled Araon icebreaker model. It is shown the proposed SPH model can satisfactorily predict the ice breaking process and ice breaking resistance on ships in ice-ship interaction.

쐐기형 모형선 주위 연속 쇄빙과정에 관한 입자 기반 수치 시뮬레이션 (Particle-based Numerical Simulation of Continuous Ice Breaking Process around Wedge-type Model Ship)

  • ;신우진;김동현;박종천;정성엽
    • 대한조선학회논문집
    • /
    • 제57권1호
    • /
    • pp.23-34
    • /
    • 2020
  • This paper covers the development of prediction techniques for ice load on ice-breakers operating in continuous ice-breaking under level ice conditions using particle-based continuum mechanics. Ice is assumed to be a linear elastic material until the fracture occurs. The maximum normal stress theory is used for the criterion of fracture. The location of the crack can be expressed using a local scalar function consisting of the gradient of the first principal stress and the corresponding eigen-vector. This expression is used to determine the relative position of particle pair to the new crack. The Hertz contact model is introduced to consider the collisions between ice fragments and the collisions between hull and ice fragments. In order to verify the developed technique, the simulation results for the three-point bending problems of ice-specimen and the continuous ice-breaking problem around a wedge-type model ship with bow angle of 20° are compared with the experimental results carrying out at Korea Research Institute of Ships and Ocean Engineering (KRISO).