• Title/Summary/Keyword: Ice loads

Search Result 61, Processing Time 0.021 seconds

Evaluation of the limit ice thickness for the hull of various Finnish-Swedish ice class vessels navigating in the Russian Arctic

  • Kujala, Pentti;Korgesaar, Mihkel;Kamarainen, Jorma
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.376-384
    • /
    • 2018
  • Selection of suitable ice class for ships operation is an important but not simple task. The increased exploitation of the Polar waters, both seasonal periods and geographical areas, as well as the introduction of new international design standards such as Polar Code, reduces the relevancy of using existing experience as basis for the selection, and new methods and knowledge have to be developed. This paper will analyse what can be the limiting ice thickness for ships navigating in the Russian Arctic and designed according to the Finnish-Swedish ice class rules. The permanent deformations of ice-strengthened shell structures for various ice classes is determined using MT Uikku as the typical size of a vessel navigating in ice. The ice load in various conditions is determined using the ARCDEV data from the winter 1998 as the basic database. By comparing the measured load in various ice conditions with the serviceability limit state of the structures, the limiting ice thickness for various ice classes is determined. The database for maximum loads includes 3-weeks ice load measurements during April 1998 on the Kara Sea mainly by icebreaker assistance. Gumbel 1 distribution is fitted on the measured 20 min maximum values and the data is divided into various classes using ship speed, ice thickness and ice concentration as the main parameters. Results encouragingly show that present designs are safer than assumed in the Polar Code suggesting that assisted operation in Arctic conditions is feasible in rougher conditions than indicated in the Polar Code.

Numerical and experimental investigation of the resistance performance of an icebreaking cargo vessel in pack ice conditions

  • Kim, Moon-Chan;Lee, Seung-Ki;Lee, Won-Joon;Wang, Jung-Yong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.1
    • /
    • pp.116-131
    • /
    • 2013
  • The resistance performance of an icebreaking cargo vessel in pack ice conditions was investigated numerically and experimentally using a recently developed finite element (FE) model and model tests. A comparison between numerical analysis and experimental results with synthetic ice in a standard towing tank was carried out. The comparison extended to results with refrigerated ice to examine the feasibility of using synthetic ice. Two experiments using two different ice materials gave a reasonable agreement. Ship-ice interaction loads are numerically calculated based on the fluid structure interaction (FSI) method using the commercial FE package LS-DYNA. Test results from model testing with synthetic ice at the Pusan National University towing tank, and with refrigerated ice at the National Research Council's (NRC) ice tank, are used to validate and benchmark the numerical simulations. The designed ice-going cargo vessel is used as a target ship for three concentrations (90%, 80%, and 60%) of pack ice conditions. Ice was modeled as a rigid body but the ice density was the same as that in the experiments. The numerical challenge is to evaluate hydrodynamic loads on the ship's hull; this is difficult because LS-DYNA is an explicit FE solver and the FSI value is calculated using a penalty method. Comparisons between numerical and experimental results are shown, and our main conclusions are given.

Determination of global ice loads on the ship using the measured full-scale motion data

  • Lee, Jae-Man;Lee, Chun-Ju;Kim, Young-Shik;Choi, Gul-Gi;Lew, Jae-Moon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.4
    • /
    • pp.301-311
    • /
    • 2016
  • This paper describes the whole procedures to determine ice-induced global loads on the ship using measured full-scale data in accordance with the method proposed by the Canadian Hydraulics Centre of the National Research Council of Canada. Ship motions of 6 degrees of freedom (dof) are found by processing the commercial sensor signals named Motion Pak II under the assumption of rigid body motion. Linear accelerations as well as angular rates were measured by Motion Pak II data. To eliminate the noise of the measured data and the staircase signals due to the resolution of the sensor, a band pass filter that passes frequencies between 0.001 and 0.6 Hz and cubic spline interpolation resampling had been applied. 6 dof motions were computed by the integrating and/or differentiating the filtered signals. Added mass and damping force of the ship had been computed by the 3-dimensional panel method under the assumption of zero frequency. Once the coefficients of hydrodynamic and hydrostatic data as well as all the 6 dof motion data had been obtained, global ice loads can be computed by solving the fully coupled 6 dof equations of motion. Full-scale data were acquired while the ARAON rammed old ice floes in the high Arctic. Estimated ice impact forces for two representative events showed 7e15 MN when ship operated in heavy ice conditions.

Development of Ice Load Generation Module to Evaluate Station-Keeping Performance for Arctic Floating Structures in Time Domain

  • Kang, Hyun Hwa;Lee, Dae-Soo;Lim, Ji-Su;Lee, Seung Jae;Jang, Jinho;Jung, Kwang Hyo;Lee, Jaeyong
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.394-405
    • /
    • 2020
  • To assess the station-keeping performance of floating structures in the Arctic region, the ice load should be considered along with other environmental loads induced by waves, wind, and currents. However, present methods for performance evaluation in the time domain are not effective in terms of time and cost. An ice load generation module is proposed based on the experimental data measured at the KRISO ice model basin. The developed module was applied to a time domain simulation. Using the results of a captive model test conducted in multiple directions, the statistical characteristics of ice loads were analyzed and processed so that an ice load corresponding to an arbitrary angle of the structure could be generated. The developed module is connected to commercial dynamic analysis software (OrcaFlex) as an external force input. Station-keeping simulation in the time domain was conducted for the same floating structure used in the model test. The mooring system was modeled and included to reflect the designed operation scenario. Simulation results show the effectiveness of the proposed ice generation module and its application to station-keeping performance evaluation. Considering the generated ice load, the designed structure can maintain a heading angle relative to ice up to 4°. Station-keeping performance is enhanced as the heading angle conforms to the drift direction. It is expected that the developed module will be used as a platform to verify station-keeping algorithms for Arctic floating structures with a dynamic positioning system.

Numerical Simulation of Colliding Behaviors of Ice Sheet Considering the Viscous Material Properties (점성변형 특성을 고려한 빙판의 충돌거동에 대한 수치해석)

  • 노인식;신병천
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.162-172
    • /
    • 1993
  • In the present paper, the overall state of the arts of ice mechanics which is the most typical research topic of the artic engineering field was studied. And also, ice loads genrated by ice-structure interaction were estimated using numerical approach. The effects of viscous property of ice sheets to the ice load were investigated. The time dependent deformation behaviors of ice was modeled by visco-plastic problem using the finite element formalism. Constitutive model representing the material properties of ice was idealized by comblned rheological model with Maxwell and Voigt models. Numerical calculations for the bending and crushing behavior of ice sheet which are the most typical interaction modes between ice sheets and structures were carried out. The time dependent viscous behaviors of ice sheets interaction forces acting on structures were analyzed and the results were studied in detail.

  • PDF

On the prediction of global first-year ice loads (1년생 빙맥 하중 추정 모델)

  • Rim, Chae-Whan
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.144-152
    • /
    • 1997
  • 본 논문에서는 1년생 빙맥에 의하여 해양구조물에 작용하는 하중을 추정할 수 있는 모델을 제시하였다. 1년생 빙맥을 수면하부(keel), 수면상부(sail), 경화층(consolidated layer)의 3부분으로 나누어 각 부분에 의한 하중을 추정할 수 있는 방법을 논의하였다. 수면하부는 얼음조각(ice rubble)이 층으로 쌓여져 형성된 것이므로 수면하부에 의한 하중추정을 할 때 얼음조각을 선형 Mohr-Coulomb재료로 생각하여 토질역학(soil mechanics)의 이론을 사용하였다. 수면상부에 의한 하중도 토질역학 이론을 이용하여 추정하였으며 경화층에 의한 하중은 Korzhavin식을 이용하여 추정하였다. 제시한 모델을 이용하여 빙맥하중 추정에 미치는 인자들의 영향을 검토하였다.

  • PDF

Estimation of burial depth for arctic offshore pipelines by an ice scour model (빙쇄굴 모델에 의한 극지 해저 파이프라인의 매설깊이 산정)

  • 윤기영;최경식
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.1-10
    • /
    • 1997
  • The interaction of ground ice features with underlying seabed is one of the major considerations in the design of Arctic pipeline systems. Regarding the development of offshore gas field near Sakhalin Island, which is an ice-infested area, in this paper an ice scour model to determine the burial depth of Arctic offshore pipeline is studied. Using a simplified ice-seabed interaction process, ice scour depth is easily estimated. This nonlinear numerical model can simulate the scouring process for various enviromental parameters such as ice mass, incoming velocity, soil strength. This study also deals with interaction forces during the scouring process in sloping seabed conditions and discusses the ice loads that are transmitted through the seabed soil.

  • PDF

A Comparative Analysis of Sea Ice Material Properties in the Amundsen Sea, Antarctica (남극 아문젠해에서 계측된 해빙의 재료특성 비교 분석)

  • Choi, Kyungsik;Kim, Hyun Soo;Ha, Jung Seok;Lee, Chun-Ju
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.3
    • /
    • pp.254-258
    • /
    • 2014
  • Field trial in ice-covered sea is one of the most important tasks in the design of icebreaking ships. To correctly estimate ice load and ice resistance on ship's hull, It is essential to understand the material properties of sea ice during ice field trials and to perform the proper experimental procedure by gathering sea ice data. A measurement of sea ice properties was conducted during February and March of 2012 with the Korean Icebreaking research vessel "ARAON" in the Amundsen Sea, Antarctica. This paper describes a test procedure to obtain sea ice data which provide basic information to estimate ice loads and icebreaking performance of the ship. The data gathered from sea ice field trials during the 2012 Antarctic voyage of the ARAON includes ice temperature/salinity/density and the compressive/flexural strength of sea ice. This paper analyses the gathered Antarctic sea ice material properties comparing with the previous data obtained during ARAON's Arctic and Antarctic voyages in 2010.

Optimal Scheduling for Dynamic Ice Storage System with Perfectly Predicted Cooling Loads (동적제빙형 빙축열시스템에 대한 최적운전계획)

  • Lee, Kyoung-Ho;Lee, Sang-Ryoul;Choi, Byoung-Youn;Kwon, Seong-Chul
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.286-291
    • /
    • 2001
  • This paper describes an optimal scheduling for ice slurry systems for energy cost saving. The optimization technique applied in the study is the dynamic programming method, for which the state variable is the storage in the ice storage tank and the control variable is the state of chiller's on-off switching. Though the costs during charge period is included in optimization by taking the average cost of ice per hour for slurry making, the time horizon for the simulation is limited building cooling period because accurate charge rate from the ice maker into the ice storage tank cannot be estimated during the charge period. In the operating simulation after optimizing procedure, energy consumption and operating cost for the optimal control are calculated and compared with them for a conventional control with one case of cooling load profile.

  • PDF

Numerical and Experimental Investigations of the Effects of Stem Angle on the Resistance of an Icebreaking Cargo Vessel in Pack Ice Conditions

  • Shin, Yong Jin;Kim, Moon Chan;Kim, Beom Jun
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.2
    • /
    • pp.67-80
    • /
    • 2016
  • The resistance performance of an icebreaking cargo vessel with varied stem angles is investigated numerically and experimentally. Ship-ice interaction loads are numerically calculated based on the fluid structure interaction (FSI) method using the commercial FE package LS-DYNA. Test results obtained from model testing with synthetic ice at the Pusan National University towing tank and with refrigerated ice at the National Research Council's (NRC) ice tank are used to validate and benchmark the numerical simulations. The designed icebreaking cargo vessel with three stem angles ($20^{\circ}$, $25^{\circ}$, and $30^{\circ}$) is used as the target ship for three concentrations (90%, 80%, and 60%) of pack ice conditions. The comparisons between numerical and experimental results are shown and our main conclusions are given.