• 제목/요약/키워드: Ice formation

검색결과 192건 처리시간 0.024초

다성분계 수용액의 교반/냉각에 의한 빙부착 (Adhesion of Ice Slurry in a Multi-component Aqueous Solution with Stirring and Cooling)

  • 강채동;강용태;홍희기
    • 설비공학논문집
    • /
    • 제14권12호
    • /
    • pp.1063-1070
    • /
    • 2002
  • To resist ice adhesion on cooling wall is concerned to continuous ice formation in thermal storage system. In this study, ice slurries were formed with two ecological aqueous solution, one is ethanol+silanol and the other is propylene glycol+silanol. By freezing under stirring the solution of $300m\ell$ in a stainless steel vessel which was immersed and cooled in a temperature controlled bath, the shape of ice slurry and the strength of ice adhesion on wall was observed with measuring the temperature and stirring load variation. As the concentration is smaller and the supercooling degree is larger, the ice adhesion is easy to occur. When the stirring load is larger than$ 2.1\times10^{-5}W$, the ice adhesion occurred.

비내빙설계 해군 함정의 결빙지역 운항 능력 평가 (Evaluation of the Capability of Non-Ice Strengthened Naval Vessels for Operation in Ice-Infested Area)

  • 김현욱
    • 한국군사과학기술학회지
    • /
    • 제24권2호
    • /
    • pp.151-164
    • /
    • 2021
  • With the gradual increase in the ROK naval power, it is an undeniable fact that the time of operation in the ice-infested area will be necessary in the near future. Recently, cases of ice formation around Korean waters in wintertime have been frequently reported. However, in the case of the ROK naval vessels to date, it is a fact that the ice-strengthened perspective has not been considered from the design stage. In this study, the capability of operation in the ice-infested area of the ROK naval vessels, which did not take into account the ice-strengthened design, was reviewed through the evaluation of the vessel's structural integrity in accordance with the sea ice conditions.

냉각면 성상이 빙부착에 미치는 영향 (Effect on the Adhesion of Ice Slurry by the Characteristic of Cooling Surface)

  • 승현;홍희기;강채동
    • 설비공학논문집
    • /
    • 제17권2호
    • /
    • pp.183-190
    • /
    • 2005
  • In the process of ice-slurry making, ice adhesion on cooling wall or in narrow flow Path disturbs continuous ice formation. In this study, the effect on the ice adhesion to cooling surface by some freezing experiments was investigated, quantitatively. Three types of solutions were frozen in various coating vessels with stirring. In the experiment, the ice adhesion between cooling wall and Ice-slurry was evaluated by measuring stirring power. From the result, the stirring power of slurry mixture in PTFE-coating vessel was smaller than those in PE-coating, PFA-coating and bare SUS vessel. Especially, in EG H PG 1.S/ HD 1.5 mass$\%$ solution, the stirring power in the PE-coating vessel was smaller than that in the PFA-coating or SUS vessel.

과냉각을 동반한 순수물의 냉각현상 해석 (Analysis of cooling phenomenon of water with the supercooled)

  • 추미선;윤정인;김재돌
    • 대한기계학회논문집B
    • /
    • 제21권7호
    • /
    • pp.862-872
    • /
    • 1997
  • Ice formation in a horizontal circular cylinder has been studied numerically. From the numerical analysis results, it was found that there were three types of freezing pattern and that freezing phenomenon was affected largely by density inversion and cooling rate. The type of freezing pattern largely depends on the secondary flow which is generated by density inversion. When supercooling energy is released before the development of the secondary flow, the annular ice layer grows. If the energy is released when the secondary flow is considerably developed and the supercooled region is removed to the upper half part of the cylinder, an asymmetric ice layer grows. And if the energy is released after perfect development of the secondary flow, instantaneous dendritic ice formation over the full region occurs. Furthermore, this secondary flow was found to have an effect on heat transfer characteristics. The heat transfer rate becomes small at the instant when the secondary flow is generated, but becomes large with the development of the flow. It's concluded that for the facilitation of heat transfer it is desirable to keep water in liquid phase until the secondary flow is perfectly developed. This study gave an instruction of performance improvement of capsule type ice storage tank.

얼음벽 형성에 대한 지하수 흐름의 영향 (Effect of Groundwater Flow on Ice-wall Integrity)

  • 신호성;김진욱;이장근
    • 한국지반공학회논문집
    • /
    • 제34권11호
    • /
    • pp.43-55
    • /
    • 2018
  • 인공동결공법은 일시적으로 지반의 강성을 높이고 투수계수를 낮추는 지반개량공법으로 지반에 적용가능하다. 하지만, 지하수 흐름과 지반의 불균질성은 동결구근 형성을 불확실하게 하여 공법에 대한 신뢰성을 저해한다. 동결지반 대한 열-수리 유한요소 해석 프로그램을 이용하여, 인공동결공법에서 지하수 흐름속도와 지반의 층상 비균질이 얼음벽 형성을 미치는 영향을 분석하였다. 지하수의 흐름은 원형의 동결구근을 원형에서 타원형을 변형시키며 얼음벽의 완성 소요시간을 증가시킨다. 기존의 이론식은 인접 동결구근의 열적 상호작용을 무시하여, 얼음벽의 완결시간과 한계유속을 과대 평가하였다. 수치해석 결과를 바탕으로 수정식을 제시하였으며 무차원 얼음벽 완결시간에 대한 제안식을 검증하였다. 층상의 비균질 지반에서 투수계수가 큰 지층의 두께와 상대적인 투수계수비는 얼음벽 완결시간과 한계 유속에 중요한 인자인 것으로 나타났다.

국토 교통 공공데이터 기반 블랙아이스 발생 구간 예측 모델 (Black Ice Formation Prediction Model Based on Public Data in Land, Infrastructure and Transport Domain)

  • 나정호;윤성호;오효정
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권7호
    • /
    • pp.257-262
    • /
    • 2021
  • 매년 동절기 블랙아이스(Black Ice)로 인한 사고는 빈번하게 발생하고 있으며, 치사율은 다른 교통사고에 비해 매우 높다. 따라서 블랙아이스 발생 구간을 사전에 예측하기 위한 체계화된 방법이 필요하다. 이에 본 논문에서는 이질(heterogeneous)·다형(diverse)의 데이터를 활용한 블랙아이스 발생 구간 예측 모델을 제안한다. 이를 위해 국토 교통 공공데이터와 기상 공공데이터 42종의 12,574,630건을 수집하여, 결측값을 처리하고 정규화하는 등의 전처리 과정을 수행한 뒤 최종 약 60만여 건의 정제 데이터셋을 구축하였다. 수집된 요인들의 상관관계를 분석하여 블랙아이스 예측에 유효한 영향을 주는 21개 요인을 선별, 다양한 학습모델을 조합하는 방법을 통해 블랙아이스 발생 예측 모델을 구현하였다. 이를 통해 개발된 예측 모델은 최종적으로 노선별 블랙아이스 위험지수 도출에 사용되어 블랙아이스 발생 경고 서비스를 위한 사전 연구로 활용될 것이다.

과냉각을 동반한 동결과정의 수치해석 (Numerical Analysis for Cooling and Freezing Processes with Subcooling)

  • 윤정인;김재돌;김성규
    • 설비공학논문집
    • /
    • 제8권4호
    • /
    • pp.451-462
    • /
    • 1996
  • In this study, which focuses on ice storage, a fundamental study in cooling and solidification was performed, including the interesting phenomena of density inversion, supercooling and dendritic ice. A numerical study was performed for natural convection and ice formation considering existence of subcooling and dendritic ice were analyzed numerically by using finite difference method and boundary fixing method. In the mesh, the solid fraction was introduced with adding as a term to the energy conservation equation. A flow in the dendrite was modelled as a flow in a porous medium, and the momentum conservation equation was modified to incorporate resistance forces involved in flows through porous media. A numerical solution of the time dependencies of dendrite area and dense ice front was successfully obtained, and the numerical results were good agreement with experimental results. Based on this methodology, a discussion was made of phenomena and characteristics of cooling and freezing processes under various conditions.

  • PDF

겨울철 노면에 발생하는 어는 비와 블랙아이스의 기상학적 분석에 관한 사례 연구 (A Case Study on Meteorological Analysis of Freezing Rain and Black Ice Formation on the Load at Winter)

  • 박근영;이순환;김은지;윤병영
    • 한국환경과학회지
    • /
    • 제26권7호
    • /
    • pp.827-836
    • /
    • 2017
  • Freezing rain is a phenomenon when precipitation falls as a liquid rain drop, but freezes when it comes into contact with surfaces or objects. In this study, we investigated the predictability of freezing rain and its characteristics, which are strongly related with the occurrence of black ice using synoptic scale meteorological observation data. Two different cases occurred at 2012 were analyzed and in the presented cases, freezing rain often occurs in the low-level low pressure with the warm front. The warm front due to the lower cyclone make suitable environment in which snow falling from the upper layer can change into supercooled water. The $0^{\circ}C$ temperature line to generate supercooling water is located at an altitude of 850 hPa in the vertical temperature distribution. And the ground temperature remained below zero, as is commonly known as a condition for black ice formation. It is confirmed that the formation rate of freezing rain is higher when the thickness after 1000-850 hPa is 1290-1310 m and the thickness of 850-700 hPa layer is larger than 1540 m in both cases. It can also be used to predict and estimate the generation of freezing rain by detecting and analyzing bright bands in radar observation.

결빙 관막음시 배관내 유체 결빙현상의 실험적 연구 (An Experimental Study for the Liquid Freezing Phenomena in a Pipe During Ice Plugging)

  • 박영돈;조현철;최병익;김귀순
    • 대한기계학회논문집B
    • /
    • 제25권3호
    • /
    • pp.366-372
    • /
    • 2001
  • The ice plugging process consists of placing liquid nitrogen around a pipe and removing heat until the water in the pipe freezes and provides a solid plug or seal against fluid movement. This technique enables us to repair or inspect a pipe system without shutdown of entire system. A set of test apparatus for investigation of the liquid freezing phenomena during ice plugging is prepared. This study shows the characteristics of the liquid freezing and the heat transfer with various pipe and freezing jacket conditions. And in case there is flow of the fluid inside the pipe, the flow rate which can be able to form the ice plug is identified with the effect of the pipe diameter and freezing jacket length on the plug formation. The permissible maximum flow rate for the complete plug formation is approximately proportional to the freezing jacket length at the same pipe diameter condition.

소형 슬러시 제조기 증발기에서 슬러시 형성시 전열 특성 (Heat Transfer Characteristics During Slush Formation in the Evaporator of a Small Slush Maker)

  • 최용민;김도영;김내현;이을종;김수환;변호원
    • 설비공학논문집
    • /
    • 제21권11호
    • /
    • pp.643-648
    • /
    • 2009
  • Tests were conducted to obtain heat transfer coefficients during slush formation from 10% sucrose solution. The slush was made by scraping the ice formed on the cylinder. Cold brine was supplied inside of the evaporator cylinder to cool the outer surface. Below a certain brine temperature, which was $-5^{\circ}C$ in this study, the solution was supercooled, and suddenly turned into ice crystals. During slush formation, the heat transfer coefficient oscillated significantly, due to periodic removal of ice chunk form the surface. The average heat transfer coefficient during slush formation was 40~70% higher than that obtained during single phase cooling. The heat transfer coefficient was also affected by the brine temperature with increasing heat transfer coefficient at higher brine temperature.