• Title/Summary/Keyword: Ice failure

Search Result 56, Processing Time 0.025 seconds

Clarithromycin Resistance Prevalence and Icea Gene Status in Helicobacter Pylori Clinical Isolates in Turkish Patients with Duodenal Ulcer and Functional Dyspepsia

  • Baglan Peren H.;Bozdayi Gulendam;Ozkan Muhip;Ahmed Kamruddin;Bozdayi A. Mithat;Ozden Ali
    • Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.409-416
    • /
    • 2006
  • Clarithromycin resistance in Helicobacter pylori is a principal cause of failure of eradication therapies, and its prevalence varies geographically. The IceA gene is a virulence factor associated with clinical outcomes. The objective of this study was to determine the current state of clarithromycin resistance prevalence, and to investigate the role of iceA genotypes in 87 Turkish adult patients (65 with functional dyspepsia and 22 with duodenal ulcer). A2143G and A2144G point mutations were tested by PCR-RFLP for clarithromycin resistance. Among the patients in the study, 28 patients were tested by agar dilution as well. Allelic variants of the iceA gene were identified by PCR. A total of 24 (27.6%) strains evidenced one of the mutations, either A2143G or A2144G. IceA1 was found to be positive in 28 of the strains (32.2 %), iceA2 was positive in 12 (13.8 %) and, both iceA1 and iceA2 were positive in 22 (25.3 %) strains. In conclusion, we discovered no relationships between iceA genotypes and functional dyspepsia or duodenal ulcer, nor between clarithromycin resistance and iceA genotypes. clarithromycin resistance appears to be more prevalent in Turkish patients.

The Study on Cooling Load Forecast using Neural Networks (신경회로망을 이용한 냉방부하예측에 관한 연구)

  • 신관우;이윤섭
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.8
    • /
    • pp.626-633
    • /
    • 2002
  • The electric power load during the peak time in summer is strongly affected by cooling load, which decreases the preparation ratio of electricity and brings about the failure in the supply of electricity in the electric power system. The ice-storage system and heat pump system etc. are used to settle this problem. In this study, the method of estimating temperature and humidity to forecast the cooling load of ice storage system is suggested. And also the method of forecasting the cooling load using neural network is suggested. For the simulation, the cooling load is calculated using actual temperature and humidity, The forecast of the temperature, humidity and cooling load are simulated. As a result of the simulation, the forecasted data is approached to the actual data.

The Study on Cooling Load Forecast of an Unit Building using Neural Networks

  • Shin, Kwan-Woo;Lee, Youn-Seop
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.4
    • /
    • pp.170-177
    • /
    • 2003
  • The electric power load during the summer peak time is strongly affected by cooling load, which decreases the preparation ratio of electricity and brings about the failure in the supply of electricity in the electric power system. The ice storage system and heat pump system etc. are used to settle this problem. In this study, the method of estimating temperature and humidity to forecast the cooling load of ice storage system is suggested. The method of forecasting the cooling load using neural network is also suggested. The daily cooling load is mainly dependent on actual temperature and humidity of the day. The simulation is started with forecasting the temperature and humidity of the following day from the past data. The cooling load is then simulated by using the forecasted temperature and humidity data obtained from the simulation. It was observed that the forecasted data were closely approached to the actual data.

Prediction of Material Behavior and Failure of Fresh Water Ice Based on Viscoplastic-Damage Model (점소성 손상모델 기반 담수빙 재료거동 및 파손 예측)

  • Choi, Hye-Yeon;Lee, Chi-Seung;Lee, Jong-Won;Ahn, Jae-Woo;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.3
    • /
    • pp.275-280
    • /
    • 2011
  • In the present study, a unified viscoplastic-damage model has been applied in order to describe the mechanical characteristics of fresh water ice such as nonlinear material behavior and volume fraction. The strain softening phenomenon of fresh water ice under quasi-static compressive loading has been evaluated based on unified viscoplastic model. The material degradation such as growth of slip/fraction has quite close relation with material inside damage. The volume fraction phenomenon of fresh water ice has been identified based on volume fraction (nucleation and growth of damage) model. The viscoplastic-damage model has been transformed to the fully implicit formulation and the discretized formulation has been implemented to ABAQUS user defined subroutine (User MATerial: UMAT) for the benefit of application of commercial finite element program. The proposed computational analysis method has been compared to uni-axial compression test of fresh water ice in order to validate the compatibilities, clarities and usefulness.

Experimental Studies of Characteristics of Strength and Deformation Behaviour of Frozen and Cyclic Frozen-thawed Clayey Soils (동결 및 동결-융해작용을 받는 점성토의 강도와 그의 변형거동)

  • 유능환;유영선;유연택
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.2
    • /
    • pp.112-119
    • /
    • 1991
  • Some experiments were carried out to investigate the effects of freezing and thawing on the strength and strain characteristics of alluvial silty clay under the different temperatures, loading and moisture conditions. The results were as follows; 1. The soil used was proved to be consisted of silty clay with honey-combed structure, and showed higher dilatancy, frost activity and lower stability in natural state. 2. Soil treated with freezing and thawing cycles showed lower compressive strength compared with the non treated, The strength decreased with incement of freezing and thawing cycles. It's shapes of stress-strain curves were flat and did not formulate a peak while the peak strength of higher moisture content soil decreased with the increment of moisture content. It's decrement ratio was most distinctly shown at the first one cycle of freezing and thawing. 3. The cohesion decreased due to freezing and thawing cycles but internal frcition angle was not changed. 4. The liquid limit decreased with increment of freezing and thawing cycles, and became almost constant after three cycles of freezing and thawing. 5. The strength under simple loading at failure mode was appeared to be higher compared with the cyclic loading after freezing and thawing but initial moisture content effect was not observed. 6. Ice lense was not observed within 50% of ice content ratio but observed over 100%. The higher the ice content ratio, the higher the peak strength. As a matter of fact, it seems that an optimum ice content ratio exists for plastic mode and the least compressive strength.

  • PDF

The impact of radiotherapy on clinical outcomes in parameningeal rhabdomyosarcoma

  • Choi, Yunseon;Lim, Do Hoon
    • Radiation Oncology Journal
    • /
    • v.34 no.4
    • /
    • pp.290-296
    • /
    • 2016
  • Purpose: Radiotherapy (RT) is considered a mainstay of treatment in parameningeal rhabdomyosarcoma (PM-RMS). We aim to determine the treatment outcomes and prognostic factors for PM-RMS patients who treated with RT. In addition, we tried to evaluate the adequate dose and timing of RT. Materials and Methods: Twenty-two patients with PM-RMS from 1995 to 2013 were evaluated. Seven patients had intracranial extension (ICE) and 17 patients had skull base bony erosion (SBBE). Five patients showed distant metastases at the time of diagnosis. All patients underwent chemotherapy and RT. The median radiation dose was 50.4 Gy (range, 40.0 to 56.0 Gy). Results: The median follow-up was 28.7 months. Twelve patients (54.5%) experienced failure after treatment; 4 local, 2 regional, and 6 distant failures. The 5-year local control (LC) and overall survival (OS) were 77.7% and 38.5%, respectively. The 5-year OS rate was 50.8% for patients without distant metastases and 0% for patients with metastases (p < 0.001). Radiation dose (<50 Gy vs. ${\geq}50Gy$) did not compromise the LC (p = 0.645). However, LC was affected by ICE (p = 0.031). Delayed administration (>22 weeks) of RT was related to a higher rate of local failure (40.0%). Conclusion: RT resulted in a higher rate of local control in PM-RMS. However, it was not extended to survival outcome. A more effective treatment for PM-RMS is warranted.

Numerical Analysis of Iceberg Impact Interaction with Ship Stiffened Plates Considering Low-temperature Characteristics of Steel (강재의 저온 특성을 고려한 선체 보강판과 빙하의 충격 상호 작용에 대한 수치 해석)

  • Nam, Woongshik
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.411-420
    • /
    • 2019
  • It is essential to design crashworthy marine structures for operations in Arctic regions, especially ice-covered waters, where the structures must have sufficient capacity to resist iceberg impact. In this study, a numerical analysis of a colliding accident between an iceberg and stiffened plates was carried out employing the commercial finite element code ABAQUS/Explicit. The ice material model developed by Liu et al. (2011) was implemented in the simulations, and its availability was verified by performing some numerical simulations. The influence of the ambient temperature on the structural resistance was evaluated while the local stress, plastic strain, and strain energy density in the structure members were addressed. The present study revealed the risk of fracture in terms of steel embrittlement induced by ambient temperature. As a result, the need to consider the possibility of brittle failure in a plate-stiffener junction during operations in Arctic regions is acknowledged. Further experimental work to understand the structural behavior in a plate-stiffener junction and HAZ is required.

Experimental Study on Cooling Load Forecast Using Neural Networks (신경회로망을 이용한 일일 냉방부하 예측에 관한 실험적 연구)

  • Shin, Kwan-Woo;Lee, Youn-Seop;Kim, Yong-Tae;Choi, Byoung-Youn
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.61-64
    • /
    • 2001
  • The electric power load during the peak time in summer is strongly affected by cooling load. which decreases the preparation ratio of electricity and brings about the failure in the supply of electricity in the electric power system. The ice-storage system and heat pump system etc are used to settle this problem. In this study, the method of estimating temperature and humidity to forecast the cooling load of ice-storage system is suggested. And also the method of forecasting the cooling load using neural network is suggested. For the simulation, the cooling load is calculated using actual temperature and humidity. The forecast of the temperature, humidity and cooling load are simulated. As a result of the simulation, the forecasted data approached to the actual data.

  • PDF

Transient Torsional Vibration Analysis of Ice-class Propulsion Shafting System Driven by Electric Motor (전기 모터 구동 대빙급 추진 시스템의 과도 비틀림 진동 분석)

  • Barro, Ronald D.;Lee, Don Chool
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.9
    • /
    • pp.667-674
    • /
    • 2014
  • A ship's propulsion shafting system is subjected to varying magnitudes of intermittent loadings that pose great risks such as failure. Consequently, the dynamic characteristic of a propulsion shafting system must be designed to withstand the resonance that occurs during operation. This resonance results from hydrodynamic interaction between the propeller and fluid. For ice-class vessels, this interaction takes place between the propeller and ice. Producing load- and resonance-induced stresses, the propeller-ice interaction is the primary source of excitation, making it a major focus in the design requirements of propulsion shafting systems. This paper examines the transient torsional vibration response of the propulsion shafting system of an ice-class research vessel. The propulsion train is composed of an electric motor, flexible coupling, spherical gears, and a propeller configuration. In this paper, the theoretical analysis of transient torsional vibration and propeller-ice interaction loading is first discussed, followed by an explanation of the actual transient torsional vibration measurements. Measurement data for the analysis were compared with an applied estimation factor for the propulsion shafting design torque limit, and they were evaluated using an existing international standard. Addressing the transient torsional vibration of a propulsion shafting system with an electric motor, this paper also illustrates the influence of flexible coupling stiffness design on resulting resonance. Lastly, the paper concludes with a proposal to further study the existence of negative torque on a gear train and its overall effect on propulsion shafting systems.

A Study on Parameter and Behavior for Composite Steel-Concrete Structure of Sandwich System (샌드위치식 강-콘크리트 복합구조체의 매개변수 및 거동특성 연구)

  • 정연주;정광희;이필승;박성수;황일선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.75-82
    • /
    • 2000
  • A huge offshore structures such as immersed tunnel, ice-resisting wall are continuously subjected to large force from water pressure, wave action and impact loads. Composite steel-concrete structure of sandwich system has profitable advantages for a huge offshore structures. This composite structures should exhibit a high degree of strength and ductility, because of concrete confining effect and the property of steel plate. Therefore, it endures large deformation and absorbs a great deal of energy until failure. In this study, nonlinear analysis for composite steel-concrete structure of sandwich system was carried out, and certify the effects of various parameters, elastic·plastic behavior characteristic, load-carrying and failure mechanism.

  • PDF