• 제목/요약/키워드: IZO/Glass Thin Film

검색결과 14건 처리시간 0.019초

대면적 상온 Indium Zinc Oxide 투명 도전막의 물성 특성 비교 (The Comparison to Physical Properties of Large Size Indium Zinc Oxide Transparent Conductive Layer)

  • 정대영;이영준;박준용;이준신
    • 한국표면공학회지
    • /
    • 제41권1호
    • /
    • pp.6-11
    • /
    • 2008
  • An Indium Zinc Oxide(IZO) transparent conductive layer was deposited on a large size glass substrate by using magnetron dc sputtering method with varying a deposition temperature. As the deposition temperature decreased to a room temperature, the sheet resistance of IZO film increased. But this deposition temperature range is included in an applicable to a device. From a standpoint of the sheet resistance, the differences of the sheet resistance were not great and the uniformity of the layer was uniformed around 10%. Crystallization particles were shown on the surface of the layer as deposition temperature increased, but these particles were not shown on the surface of the layer as deposition temperature decreased to the room temperature. It didn't make a scrap of difference in a transmittance of varying deposition temperature. Therefore, it is concluded that IZO thin film manufactured by the room temperature deposition condition can be used as a large size transparent conductive layer of a liquid crystal display device.

플라스틱 기판의 Outgassing이 TCO 박막의 전기적 특성에 미치는 영향 (Out Gassing from Plastic Substrates Affect on the Electrical Properties of TCO Films)

  • 김화민;지승훈
    • 한국전기전자재료학회논문지
    • /
    • 제22권11호
    • /
    • pp.961-968
    • /
    • 2009
  • In this work, transparent conductive oxide(TCO) films such as $In_2O_3-SnO_2$(ITO) and $In_2O_3-ZnO$(IZO) were prepared on polyethylene naphthalene(PEN) and glass substrates by using rf-magnetron sputtering system. The TCO films deposited on PEN substrate show very poor conductivity as compared to that of the TCO films deposited on glass substrates. From the results of the residual gas analysis(RGA) test, this poor stability of plastic substrate is presumed to be caused by the deteriorated adhesion between the TCO films and the plastic substrate due to outgassing from the plastic substrate during deposition of TCO films. From our experiment, it is found that the vaporization of some defects in the plastic substrates deteriorate the adhesion of the TCO films to the plastic substrate, because the most plastic substrates containing the water vapor and/or other adsorbed particles such as organic solvents. Mixing of these gases vaporized in the sputtering process will also affect the electrical property of the deposited TCO films. Inorganic thin composite $(SiO_2)_{40}(ZnO)_{60}$ film as a gas barrier layer is coated on the PEN substrate to protecting the diffusion of vapors from the substrate, so that the TCO films with an improved quality can be obtained.

콤비네이숀 마그네트론 스퍼터링법에 의한 IGZO 투명전도막의 제조 (Fabrication of IGZO Transparent Conducting thin Films by The Use of Combinational Magnetron Sputtering)

  • 정재혜;이세종;조남인;이재열
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.425-425
    • /
    • 2008
  • The transparent conducting oxides(TCOs) are widely used as electrodes for most flat panel display devices(FPDs), electrodes in solar cells and organic light emitting diodes(OLED). Among them, indium oxide materials are mostly used due to its high electrical conductivity and a high transmittance in the visible spectrum. The present study reports on a study of the electrical and optical properties of IGZO thin films prepared on glass and PET substrates by the combinational magnetron sputtering. We use the targets of IZO and Ga2O3 for the deposition process. In some case the deposition process is coupled with the End-Hall ion-beam treatment onto the substrates before the sputtering. In addition we control the deposition rate to optimize the film quality and to minimize the surface roughness. Then we investigate the effects of the Ar gas pressure and RF power during the sputtering process upon the electrical, optical and morphological properties of thin films. The properties of prepared IGZO thin films have been analyzed by using the XRD, AFM, a-step, 4-point probe, and UV spectrophotometer.

  • PDF

Transparent Conductive Indium Zinc Tin Oxide Thin Films for Solar Cell Applications

  • ;이희영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.208-208
    • /
    • 2010
  • Indium zinc tin oxide (IZTO) thin films were studied as a possible alternative to indium tin oxide (ITO) films for providing low-cost transparent conducting oxide (TCO) for thin film photovoltaic devices. IZTO films were deposited onto glass substrates at room temperature. A dc/rf magnetron co-sputtering system equipped with a ceramic target of the same composition was used to deposit TCO films. Earlier studies showed that the resistivity value of $In_{0.6}Zn_{0.2}Sn_{0.2}O_{1.5}$ (IZTO20) films could be lowered to approximately $6{\times}10^{-4}ohm{\cdot}cm$ without sacrificing optical transparency and still maintaining amorphous structure through the optimization of process variables. The growth rate was kept at about 8 nm/min while the oxygen-to-argon pressure ratio varied from 0% to 7.5%. As-deposited films were always amorphous and showed strong oxygen pressure dependence of electrical resistivity and electron concentration values. Influence of forming gas anneal (FGA) at medium temperatures was also studied and proven effective in improving electrical properties. In this study, the chemical composition of the targets and the films varied around the $In_{0.6}Zn_{0.2}Sn_{0.2}O_{1.5}$ (IZTO20). It was the main objective of this paper to investigate how off-stoichiometry affected TCO characteristics including electrical resistivity and optical transmission. In addition to the composition effect, we have also studied how film properties changed with processing variables. IZTO thin films have shown their potential as a possible alternative to ITO thin films, in such way that they could be adopted in some applications where currently ITO and IZO thin films are being used. Our experimental results are compared to those obtained for commercial ITO thin films from solar cell application view point.

  • PDF