• Title/Summary/Keyword: IVM

Search Result 350, Processing Time 0.034 seconds

Cytoskeletal Patterns, In Vitro Maturation and Parthenogenetic Development of Rabbit GV Oocytes

  • Ju, J.C.;Chen, T.H.;Tseng, J.K.;Tsay, C.;Yeh, S.P.;Chou, P.C.;Chen, C.H.;Liu, C.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.12
    • /
    • pp.1695-1701
    • /
    • 2002
  • The purposes of this study were to optimize the in vitro maturation (IVM) and culture (IVC) systems of rabbit oocytes. Cytoskeletal structures in the germinal vesicle stage (GV) and during IVM are also investigated. Ovaries were transported from local slaughterhouses and the cumulus-oocyte complexes (COCs) were collected from ovarian follicles (${\geq}1mm$). COCs were randomly allocated to TCM199-based medium ($T_1$, TCM-199) supplemented with $NaHCO_3$, glucose, sodium pyruvate and FSH ($T_2$), $T_2+E_2+LH$ ($T_3$), $T_3+FBS$ ($T_4$), or $T_1+E_2+LH+FSH+FBS$ ($T_5$), for IVM. In Experiment 1, COCs were retrieved from the follicles and 51 GV oocytes were fixed in the fixative (MTSB-XF) for nuclear and cytoplasmic examinations. In Experiment 2, progressive changes of both the nucleus and the cytoskeleton were examined at 0, 6, 16, and 20 h after IVM. Maturation (MR) and developmental rates were assessed in Experiment 3. Cytoplasmic microtubules (MT) were clearly observed in rabbit GV oocytes. To our knowledge, this is the first report that describes the appearance of MT structures in the GV stage ooplasm. Tremendous variations in cytoskeletal alterations were observed among treatments with the exception of the vitelline ring (VR), which is constantly visible and unchanged during maturation. Germinal vesicle breakdown (GVBD) does not occur at 6 h after onset of maturation culture. When the oocytes for IVM were collected within 2 h, results from Experiment 3 showed that rates of nuclear maturation were 42, 8, 42, 37 and 65% at 16 h of IVM for $T_1$ through $T_5$, respectively, in which $T_1$, $T_4$ and $T_5$ had significantly greater MR than those in other groups (p<0.05). Morula/blastocyst development after parthenogenetic activation ranged from 20 to 63% with significantly greater rates in $T_3$, $T_4$ and $T_5$ (p<0.05). These results suggested that oocytes recovered from slaughterhouse ovaries can be matured and parthenogenetically activated in vitro, but the MR remained low in this study. Addition of $E_2$ and LH in the medium may be beneficial for cytoplasmic maturation, but FBS exerts a nega- tive role in the subsequent development of parthenogenetic embryos when energy substrates are provided in the IVC media. More studies are required for improving the MR and further development of the GV stage rabbit oocytes.

Melatonin Attenuates Nitric Oxide Induced Oxidative Stress on Viability and Gene Expression in Bovine Oviduct Epithelial Cells, and Subsequently Increases Development of Bovine IVM/IVF Embryos

  • Kim, J.T.;Jang, H.Y.;Park, C.K.;Cheong, H.T.;Park, I.C.;Yang, B.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.2
    • /
    • pp.190-197
    • /
    • 2011
  • The objective of the present study was to elucidate the fundamental mechanism of bovine oviduct epithelial cell (BOEC) co-culture on developmental capacity of bovine IVM/IVF embryos and to determine whether or not melatonin acts as an antioxidant in BOEC culture and subsequent embryo development. These studies examined the effects of melatonin against NO-induced oxidative stress on cell viability, lipid peroxidation (LPO) and the expression of antioxidant genes (CuZnSOD, MnSOD and Catalase) or apoptosis genes (Bcl-2, Caspase-3 and Bax) during BOECs culture. We also evaluated the developmental rates of bovine IVM/IVF embryos with BOEC co-culture, which were pre-treated with melatonin ($1,000\;{\mu}M$) in the presence or absence of sodium nitroprusside (SNP, $1,000\;{\mu}M$) for 24 h. Cell viability in BOECs treated with SNP (50-$2,000\;{\mu}M$) decreased while melatonin addition (1-$1,000\;{\mu}M$) increased viability in a dose-dependent manner. Cell viability in melatonin plus SNP ($1,000\;{\mu}M$) gradually recovered according to increasing melatonin addition (1-$1,000\;{\mu}M$). The LPO products were measured by thiobarbituric acid (TBA) reaction for malondialdehyde (MDA). Addition of melatonin in BOEC culture indicated a dose-dependent decrease of MDA, and in the SNP group among BOECs treated with SNP or melatonin plus SNP groups MDA was significantly increased compared with SNP plus melatonin groups (p<0.05). In expression of apoptosis or antioxidant genes detected by RT-PCR, Bcl-2 and antioxidant genes were detected in melatonin or melatonin plus SNP groups, while Caspase-3 and Bax genes were only found in the SNP group. When bovine IVM/IVF embryos were cultured for 6-7 days under the BOEC co-culture system pre-treated with melatonin in the presence or absence of SNP, the highest developmental ability to blastocysts was obtained in the $1,000\;{\mu}M$ melatonin group. These results suggest that melatonin has an anti-oxidative effect against NO-induced oxidative stress on cell viability of BOECs and on the developmental competence of bovine IVM/IVF embryo co-culture with BOEC.

Reduction of Mitochondrial Derived Superoxide by Mito-TEMPO Improves Porcine Oocyte Maturation In Vitro (Mito-TEMPO에 의한 미토콘드리아 유래 초과산화물의 감소가 돼지 난모세포 성숙에 미치는 영향)

  • Yang, Seul-Gi;Park, Hyo-Jin;Lee, Sang-Min;Kim, Jin-Woo;Kim, Min-Ji;Kim, In-Su;Jegal, Ho-Geun;Koo, Deog-Bon
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.10-19
    • /
    • 2019
  • Morphology of cumulus-oocyte-complexes (COCs) at germinal vesicle (GV) stage as one of the evaluation criteria for oocyte maturation quality after in vitro maturation (IVM) plays important roles on the meiotic maturation, fertilization and early embryonic development in pigs. When cumulus cells of COCs are insufficient, which is induced the low oocyte maturation rate by the increasing of reactive oxygen species (ROS) in porcine oocyte during IVM. The ROS are known to generate including superoxide and hydrogen peroxide from electron transport system of mitochondria during oocyte maturation in pigs. To regulate the ROS production, the cumulus cells is secreted the various antioxidant enzymes during IVM of porcine oocyte. Our previous study showed that Mito-TEMPO, superoxide specific scavenger, improves the embryonic developmental competence and blastocyst formation rate by regulating of mitochondria functions in pigs. However, the effects of Mito-TEMPO as a superoxide scavenger to help the anti-oxidant functions from cumulus cells of COCs on meiotic maturation during porcine oocyte IVM has not been reported. Here, we categorized experimental groups into two groups (Grade 1: G1; high cumulus cells and Grade 2: G2; low cumulus cells) by using hemocytometer. The meiotic maturation rate from G2 was significantly (p < 0.05) decreased (G1: $79.9{\pm}3.8%$ vs G2: $57.5{\pm}4.6%$) compared to G1. To investigate the production of mitochondria derived superoxide, we used the mitochondrial superoxide dye, Mito-SOX. Red fluorescence of Mito-SOX detected superoxide was significantly (p < 0.05) increased in COCs of G2 compared with G1. And, we examined expression levels of genes associated with mitochondrial antioxidant such as SOD1, SOD2 and PRDX3 using a RT-PCR in porcine COCs at 44 h of IVM. The mRNA levels of three antioxidant enzymes expression in COCs from G2 were significantly (p < 0.05) lower than COCs of G1. In addition, we investigated the anti-oxidative effects of Mito-TEMPO on meiotic maturation of porcine oocyte from G1 and G2. Meiotic maturation and mRNA levels of antioxidant enzymes were significantly (p < 0.05) recovered in G2 by Mito-TEMPO ($0.1{\mu}M$, MT) treatment (G2: $68.4{\pm}3.2%$ vs G2 + MT: $73.9{\pm}1.4%$). Therefore, our results suggest that reduction of mitochondria derived superoxide by Mito-TEMPO may improves the meiotic maturation in IVM of porcine oocyte.

Localization of Angiotensin II in Korean Bovine Follicles and Its Effects on IVM/IVF of Oocytes

  • Quen, J. H.;Kim, S. K.
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.252-252
    • /
    • 2004
  • 1. The concentrations of Ang. Ⅱ were 7.2±0.91 × 10³, 3.8±0.34 × 10³, 3.5±0.30 × 10³, 2.8±0.22 × 10³ pg/㎖ in bovine follicular fluids from 1∼3 ㎜, 3∼5 ㎜, 5∼7 ㎜ and 8∼10 ㎜ follicles, respectively. However, the concentrations of Ang. Ⅱ decreased in follicular fluids from large follicles. (omitted)

  • PDF

Study on the Convenient Freezing Method in Boar Semen

  • 김성곤;장현용;박동헌;박춘근;정희태;김정익;양부근
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.278-278
    • /
    • 2004
  • The purpose of this study was to establish the convenient freezing method for more cheap and simple. Semen quality was evaluated the motility, viability, abnormality, acrosome intactness and membrane integrity. And there were also examined the developmental rates of IVM/IVF embryos using frozen-thawed boar semen in each treatment group. (omitted)

  • PDF

A Comparative Study on the Parthenogenetic Development of Pig Oocytes Cultured in North Carolina State University-23 and Porcine Zygote Medium-3

  • Lee, Joo-Hyeong;Hyun, Sang-Hwan;Lee, Eun-Song
    • Journal of Embryo Transfer
    • /
    • v.27 no.2
    • /
    • pp.121-126
    • /
    • 2012
  • The objective of this study was to examine the effect of in vitro culture media on embryonic development of in vitro-matured (IVM) oocytes after parthenogenetic activation (PA) in pigs. Immature pig oocytes were matured in TCM-199 supplemented with porcine follicular fluid, cysteine, pyruvate, EGF, insulin, and hormones for the first 22 h and then further cultured in hormone-free medium for an additional 22~26 h. IVM oocytes were activated by electric pulses and cultured in porcine zygote medium-3 (PZM-3) and North Carolina State University-23 supplemented with essential and non-essential amino acids (NCSU-23aa). These media were further modified by supplementing 2.77 mM myo-inositol, 0.34 mM trisodium citrate, and $10{\mu}M$ ${\beta}$-mercaptoethanol (designated as mPZM-3 and mNCSU-23aa, respectively). Culture of PA embryos in mPZM-3 significantly increased development to the blastocyst stage than culture in NCSU-23aa (36.2% vs. 24.8%, p<0.05). Modified PZM-3 showed a significantly higher blastocyst formation than NCSU-23aa in both groups of embryos that were activated at 44 h and 48 h of IVM (51.0% vs. 35.5% and 49.0% vs. 34.2% in oocytes activated at 44 h and 48 h of IVM, respectively). Irrespective of the follicle diameter where oocytes were collected, embryonic development to the blastocyst stage was increased (p<0.05) by the culture in mPZM-3 compared to culture in NCSU-23aa (25.9% vs. 34.2% and 32.9% vs. 44.8% in embryos derived from small and medium size follicles, respectively). Our results demonstrated that culture media had significant effect on preimplantation development PA embryos and that mPZM-3 was superior to mNCSU-23 in supporting development to the blastocyst stage in pigs. This beneficial effect of mPZM-3 on embryonic development was not impaired by other factors such as time of oocyte activation and origin of immature oocytes (small and medium size follicles).

Effects of (-)-Epicatechin Gallate on porcine oocyte in vitro maturation and subsequent embryonic development after parthenogenetic activation and in vitro fertilization

  • Seo, Min-Su;So, Kyoung-Ha;Hyun, Sang-Hwan
    • Journal of Embryo Transfer
    • /
    • v.31 no.3
    • /
    • pp.153-159
    • /
    • 2016
  • (-)-Epicatechin gallate (ECG) is a polyphenol compound of green tea exhibiting biological activities, such as antioxidant and anticancer effects. To examine the effect of ECG on porcine oocytes during in vitro maturation (IVM), oocytes were treated with 0-, 5-, 15-, and $25{\mu}M$ ECG. After maturation, we investigated nuclear maturation, intracellular glutathione (GSH) and reactive oxygen species (ROS) levels and subsequent embryonic development after parthenogenetic activation (PA) and in vitro fertilization (IVF). After 42 hours of IVM, the $5{\mu}M$ group exhibited significantly increased (p< 0.05) nuclear maturation (89.8%) compared with the control group (86.1%). However, the $25{\mu}M$ group observed significantly decreased (p< 0.05) nuclear maturation (83.5%). In intracellular maturation assessment the 5-, 15-, and $25{\mu}M$ groups had significantly increased (p< 0.05) GSH levels and decreased ROS levels compared with the controls. The 5- and $15{\mu}M$ group showed significantly increased (p< 0.05) embryo formation rates and total cell number of blastocysts after PA (18% and 68.9, 15% and 85.1 vs. 12% and 59.5, respectively) compared with controls. Although the $25{\mu}M$ group observed significantly lower blastocyst formation rates after PA (27.6% vs. 23.2%) than control group, the $5{\mu}M$ group showed significantly increased blastocyst formation rates after PA (37.2% vs. 23.2%) compared to the control group. Furthermore, the $5{\mu}M$ group measured significantly increased blastocyst formation rates (20.7% vs. 8.6%) and total cell number after IVF ($88.3{\pm}1.5$ vs. $58.0{\pm}3.6$) compared to the control group. The treatment of $5{\mu}M$ ECG during IVM affectively improved the porcine embryonic developmental competence by regulating intracellular oxidative stress during IVM.

Effects of Oocyte Maturational Age and Activation Conditions on the Development of Porcine Parthenogenetic Embryos

  • Kwon, Dae-Jin;Park, Joo-Hee;Park, Choon-Keun;Yang, Boo-Keun;Cheong, Hee-Tae
    • Reproductive and Developmental Biology
    • /
    • v.31 no.2
    • /
    • pp.77-82
    • /
    • 2007
  • This study was conducted to investigate the effects of oocyte maturational age and activation condition on in vitro development of porcine parthenogenetic embryos (parthenotes). Porcine follicular oocytes were matured in vitro for 30 to 44 hr. Maturation rate was examined during in vitro maturation (IVM) every 2 hr interval. The cdc2 kinase activity was measured at 36 and 44 hr of IVM. Some oocytes were activated at 36 or 44 hr of IVM by three different conditions; 1) single electric stimulation (1.5 kV/cm for $30{\mu}sec$; ES), 2) double electric stimulations (1.5 kV/cm for $30{\mu}sec$, followed by 1.0 kV/cm for $50{\mu}sec$ after 1 hr; ES+ES) or 3) ES+ES followed by culture in 6-dimethlyaminopurine (6-DMAP) for 4 hr (ES+ES+D), and cultured for 6-7 days. Maturation rate was significantly increased as culture period was increased to 36 hr (66.9%, p<0.05), and then gradually increased to 87.1% at 44 hr of IVM. The cdc2 kinase activity was decreased (p<0.05) with culture period prolonged from 36 hr to 44 hr. Lower blastocyst formation rate (4.3%, p<0.05) were obtained by ES in 36 hr-matured oocytes compared to other treatments (16.5 and 20.5%) in the same age and the same treatment in 44 hr-matured oocytes (15.0%). High blastocyst formation rate (23.6%) was obtained by ES+ES+D in 44 hr-matured oocytes (p<0.05). These results demonstrate that porcine oocyte activation and in vitro development of parthenotes can be affected by interactions between oocyte maturational age and activation condition.