• Title/Summary/Keyword: IVF calf

Search Result 16, Processing Time 0.028 seconds

Production of Normal Calves after Transfer of IVF-Derived Bovine Embryos (체외수정란 유래의 송아지 생산)

  • 한용만
    • Korean Journal of Animal Reproduction
    • /
    • v.18 no.1
    • /
    • pp.7-13
    • /
    • 1994
  • To verify in vivo viability of IVF-derived bovine embryos, morula and blastocysts that developed from in vitro matured and fertilized ova were transferred to the uteri of recipient cows and normal calves were produced. To produce IVF-derived bovine morula or blastocysts, ova matured and fertilized in vitro were cultured in culture medium for 7~8 days at 39$^{\circ}C$ under the humicified atmosphere of 5% CO2. Two different culture systems, a co-culture system with TCM-199 and bovine epithelial cells (BOEC) and CR1aa without somatic cell support, were compared. Cleavage rates to 2~8 cell stage and developmental rates of IVF-derived bovine embryos to blastocyst stage were not different between co-culture system (51.3 and 14.0%) and CR1aa medium (60.4 and 22.1%), respectively. Embryos were classified into three grades by embryo quality and then one or two embryos in higher quality(A and B grades) were transferred to the uterus of recipients. In this study Korean Native calf was first born after transfer of IVF-derived embryos. Total four live calves were normally developed to term from IVF-derived bovine blastocysts and one female fetus was still-born approximatedly 8 months of gestation, but there was no pregnancy after transfer of morula. Therefore, normal calves could be produced after transfer of IVF-derived bovine embryos cultured in CR1aa medium without somatic cell support. In addition, our results suggest that in transfer of IVF-derived bovine embryos blastocyst stage is better than morula.

  • PDF

Viability of In Vitro Fertilized Bovine Embryos Following In Vitro Culture and Embryo Transfer (소 체외수정란의 체외배양 및 이식후 생존성)

  • 정희태;유재원;박연수;양부근;김정익
    • Journal of Embryo Transfer
    • /
    • v.9 no.3
    • /
    • pp.221-227
    • /
    • 1994
  • This study was conducted to examine the condition of in vitro culture system and the viability after embryo transfer of in vitro matured-in vitro fertilized (IVM-IVF) bovine embryos. The in vitro development to the blastocyst stage was enhanced by supplying bovine serum albumin(BSA) to co-culture medium with bovine oviduct epithelial tissue(BOET) compared with that in medium supplemented with fetal bovine serum(FBS) (41.2% vs. 26. 3%, P<0.05). After transfer of IVM-IVF blastocysts into the uterine horn of recipient females (Aberdeen Angus), one was pregnant to term and produced a head of male Korean native calf. These results confirm that the in vitro development of IVM-IVF bovine embryos is affected with different protein source in co-culture with BOET, and IVM-IVF embryos can develop to term after in vitro culture and embryo transfer.

  • PDF

Production of Korean Native Calf by In Vitro Maturation, Fertilization, Cultivation and Transfer of Embryos into Holstein Cows (체외성숙, 수정 및 배양된 한우 체외수정란의 유우이식에 의한 산자 생산)

  • 박충생
    • Korean Journal of Animal Reproduction
    • /
    • v.18 no.1
    • /
    • pp.47-54
    • /
    • 1994
  • The objective of this study was to produce Korean native calves following transfer of in vitro matured, fertilized and cultured embryos into Holstein cows. The ovaries of Korean native cows or heifers were obtained from an abattoir and kept on 25 to 28$^{\circ}C$ and transported to laboratory within 2 hrs. The oocytes were matured in vitro (IVM) for 24 hrs in TCM-199 supplemented with 35$\mu\textrm{g}$/ml FSH, 10$\mu\textrm{g}$/ml LH, 1$\mu\textrm{g}$/ml estradiol-17$\beta$ and granulosa cells at 39$^{\circ}C$ under 5% CO2 in air. They were fertilized in vitro (IVF) by epididymal spermatozoa treated with heparin for 24 hrs., and then the zygotes were co-cultured in vitro (IVC) with bovine oviductal epithelial cells for 7 to 9 days. Late morulae and blastocysts produced in vitro were nonsurgically transferred to recipient cows by unilaterial. Recipients were monitored for estrus and for pegnancy by rectal plapation in 60 days after embryo transfer. One of them was pregnant to term and produced a female weighing 42.5kg at birth.

  • PDF

Viability of Somatic Cell Nuclear Transfer Embryos following Embryo Transfer in Korean Native Striped Cattle (Bos namadicus Falconer, Chikso)

  • Kwon, Dae-Jin;Park, Joo-Hee;Hwang, Hwan-Sub;Park, Yeon-Soo;Park, Choon-Keun;Yang, Boo-Keun;Cheong, Hee-Tae
    • Reproductive and Developmental Biology
    • /
    • v.31 no.4
    • /
    • pp.235-240
    • /
    • 2007
  • This study was conducted to examine the viability of Korean native striped cattle (Bos namadicus Falconer, Chikso) clone embryos after embryo transfer. Chikso somatic cell nuclear transfer (SCNT) embryos were produced by fusion of ear skin cells derived from a female Chikso with enucleated oocytes matured in vitro for 18-24 hr. After in vitro culture of SCNT embryos for 7 to 8 days, fresh or vitrified blastocysts derived from SCNT were transferred into a uterine horn of recipient cows. Fifteen of total 43 recipients were pregnant at Day 50 and 4 recipients were maintained to term. Three IVF-derived calves and 1 clone Chikso calf were born. Pregnancy rate was higher when fresh embryos were transferred to recipients compared to vitrified embryos, but development to term was not different between both groups. The clone Chikso calf died at 5 days after birth due to the fullness of amniotic fluid in rumen and the infection of umbilical cord. The result of the present study shows that clone Chikso calf can produced from the embryo transfer of SCNT embryos, however, solution of abortion problem is necessary to improve the cloning efficiency.

Co-culture of In Vitro Matured and Fertilized Bovine Oocytes with Oviductal Epithelium (체외성숙, 체외수정 우 난포란의 Co-culture에 관한 연구)

  • 고광두;양부근;김정익
    • Korean Journal of Animal Reproduction
    • /
    • v.14 no.1
    • /
    • pp.50-56
    • /
    • 1990
  • Bovine oocytes obtained from follicles(2~5mm) of ovaries after slaughter were cultured in TCM 199 medium with 10~20% heat-inactivated estrus cow serum(ECS) for 25~27 hr, at 39$^{\circ}C$ under 5% CO2 in air. At the end of culture period, some oocytes were stained with 1% acetoorcein and examined for the evidence of oocyte maturation. The remainder were used to assess the potential of in vitro fertilization(IVF) with frozen-thawed spermatozoa and subsequent development in media with or without bovine oviduct epithelial cell (BOEC) co-culture. The results obtained were summarized as follows ; 1. The maturation rate of oocyte in vitro in TCM 199 medium with 15% ECS group(76.3) was superior to 10% ECS group(68.3%) and 20% ECS group(64.5%). 2. The IVF rates of oocytes matured in vitro, and formation rate of male and female pronuclei were 63.6%(77/121) and 93.5%(72/77), respectively. The incidence of polyspermy was very low(2.4%). 3. Of 73 oocytes fertilized in vitro and cultured in TCM 199 medium with 10% fetal calf serum for 7 days, 41(56.3%) were cleaved over 2-cell and only 1(2.4%) was developed beyond the 16-cell stage. 4. Of 76 oocytes co-cultured with BOEC, 58(76.3%) were cleavaged and 23(39.7%) were developed to morula and blastocyst stage. The results of this study indicate that co-culture with BOEC deserved a positive effect on the IVF oocyte development through the 16-cell block.

  • PDF

Production Efficiency of In Vitro Fertilized Embryos by Different Maturation Periods and Culture Systems in Korean Native Cattle (체외성숙시간 및 배양방법에 따른 한우 체외수정란의 생산효율)

  • 노규진;강태영;이효종;박충생;최상용
    • Journal of Embryo Transfer
    • /
    • v.11 no.3
    • /
    • pp.241-248
    • /
    • 1996
  • This study was conducted to improve the production efficiency of in vitro produced (IVP) embryos in Korean Native cows. The optimal conditions and procedures for in vitro maturation(IVM), in vitro fertilization(IVF) and in vitro culture(IVC) of bovine follicular oocytes and IVP embryos were evaluated. Immature follicular oocytes were collected fiom the follicles of bovine ovaries obtained from abattoirs. The oocytes of Grade I and II for IVM were cocultured with monolayered bovine oviductal epithelial cells(BOEG) or granulosa cells in TCM-199 solution supplemented with follicle stimulating hormone, lutenizing hormone, estradiol-17$\beta$ and heat inactivated fetal calf serum at 39$^{\circ}C$ under 5% $CO_2$ in air for 14 to 24 hours. Most of the oocytes(93%) matured to metaphase II in 24 hours. The cocultured IVM oocytes were fertilized in vitro at significantly(P<0.05) higher rate with BOEC(83.8%) and with granulosa cells(84.6%) than the non-cocultured IVM oocytes(73.6%). The IVM-IVF embryos developed to morula and blastocyst at significantly(P<0.05) higher rate in coculture with BOEC(41.2%) than with granulosa cells(23.1%) or conditioned medium(23.4%).

  • PDF

In Vitro Development of Nuclear Transplantation Bovine Embryos Using In Vitro Fertilized Embryos of Korean Native Heifers (한우 체외수정란을 이용한 핵 이식배의 체외발달에 관한 연구)

  • 박충생;공일근;노규진;이효종;최상용
    • Korean Journal of Animal Reproduction
    • /
    • v.18 no.2
    • /
    • pp.113-119
    • /
    • 1994
  • To improve nuclear transplantation(NT) efficiency and to produce a large scale genetically identical cloned calves, examined the in vitro development capacity after co-culture of bovine oviductal epithelial cells (BOEC) and granulosa cells in TCM-199 supplemented with 10% fetal calf serum (FCS) with early bovine embryos derived from in vitro matured fertilized(IVM-IVF) oocyte. In addition, the age dependence of IVM oocyte on electro-stimulation and the effective electric voltage on in ivtro development of bovine NT embryos were examined. The results obtained were summerized as follows; 1. The cleavage rates of IVM-IVF bovine embryos in co-culture with bovine oviductal epithelial cells and granulosa cells were not significantly different(P<0.05), but the developmental rate into morula and blastocyst stage were different showing 38.3 and 20.2%, respectively. 2. The activation (82.5%) and development in vitro(8.6%) into later embryo stages of the aging oocytes of 32 hours post-maturation (hpm) were significantly higher than those of 24 hpm at direct current (DC) voltage of 1.5kV/cm, 60$\mu$sec pulse duration and 1 pulse time. 3. The fusion rates of NT eggs of 32 hpm following to different DC voltages from range 0.75 to 1.5kV/cm were not differ, but the developmental rate into morula and blastocyst stages at DC voltages of 0.75 and 1.0kV/cm were higher(11.4 and 12.6%, respectively) than those of 1.5kV/cm(0%). From these results, it can be suggested the optimal culture system for in vitro culture of IVM-IVF bovine embryos is a co-culture system with BOEC in TCM-199 supplemented 10% FCS. The effective time and the DC voltage for activation, electrofusion and in vitro development of NT embryos derived from IVM-IVF bovine embryo are 32hpm and 0.75~1.0kV/cm. But to improve NT efficiency, the advanced research (cell cycle synchronization, micromanipulation, culture system, etc.) is needed.

  • PDF

Effect of Insulin, Transferrin and Platelet-Derived Growth Factor Supplemented to Synthetic Oviduct Fluid Medium on In Vitro Development of Bovine Embryos Matured and Fertilized In Vitro (합성난관배양액에 첨가된 Insulin, Transferrin 및 Platelet-Derived Growth Factor (PDGF)가 소 수정란의 체외발육에 미치는 영향)

  • 이은송
    • Journal of Embryo Transfer
    • /
    • v.12 no.3
    • /
    • pp.283-291
    • /
    • 1997
  • In vitro development of bovine embryos is affected by many factors such as energy substrates, amino acids, and some growth factors. It has been reported that mRNA of insulin, PDGF and their receptors are detected in cow embryos, and that some chelating agents such as EDTA and transferrin have beneficial role on mouse and bovine embryos. The author hypothesized that insulin, transferrin arid PDGF added to a culture medium increase in vitro development of bovine embryos by chelating toxic substance(s) or increasing cell growth and metabolism. Immature oocytes from slaughtered ovaries of Holstein cows and heifers were matured for 24 hours in a TCM199 containing 10% fetal calf serum, FSH, LH and estradiol with granulosa cells in vitro. Matured oocytes were coincubated with sperm for 30 hours in a modified Tyrode's medium (IVF). Embryos cleaved to 2- to 4-cell at 30 hours after IVF were selected and cultured in a 30-$\mu$l drop of a synthetic oviduct fluid medium (SOFM) containing 0.8% BSA, Minimum Essential Medium essential and non-essential amino acids, and insulin, transferrin or PDGF for 9 days. Supplementation of a SOFM with insulin, and /or transferrin did not increase develop-mental rate to expanding and hatching blastocyst of 2- to 4-cell bovine embryos compared with control. The highest developmental rate to hatching blastocyst was shown when PDGF was added at the concentration of 10 ng /ml among the supplementing doses tested in the present study (p<0.05). Addition of PDGF without insulin to a SOFM could not increase embrye development, but combined addition of PDGF with insulin significantly increased (p<0.05) embryo development to hatching blastocyst (50%) compared with control (38%). In conclusion, insulin and PDGF supplemented to a SOFM may act synergistically and have beneficial effect on in vitro development of 2- to 4-cell bovine embryos matured and fertilized in vitro.

  • PDF

Effects of In Vitro Maturation, In Vitro Fertilization and In Vitro Culture Conditions on Bovine Embryo Production (체외성숙, 수정 및 배양에 있어서 각기 다른 배양조건들이 소 체외수정란의 생산에 미치는 효과)

  • 조성근;송상현;공일근;이효종;최상용;박충생
    • Journal of Embryo Transfer
    • /
    • v.15 no.1
    • /
    • pp.67-75
    • /
    • 2000
  • This study was conducted to establish the optimal conditions for in vitro embryo production using oocytes derived from follicles of slaughter-house ovaries. The ovaries of Hanwoo were obtained from a local slaughter-house. The oocytes were aspirated from visible follicles of 2~7mm in diameter. The recovered oocytes which were completely surrounded by at least 2 layers of cumulus cells and a homogeneous cytoplasmic pigmentation were used. The selected oocytes were washed 3 or 4 times with D-PBS containing 10% bovine calf serum (BCS) and matured in vitor (IVM) in Ham's F-10 supplemented with 10% BCS or 0.01 $\mu\textrm{g}$/ml epidermal growth factor(EGF) at 39$^{\circ}C$ under 5% CO2 in air for 24 hours. They were fertilizqed in vitro (IVF) with fresh sperm separated by Percoll density gradient or swim-up in TALP media. The zygotes were cultrued with or without bovine oviductal epitherial cells(BOEC) in media(HECM-6 supplemented with 11 amino acid and / or TCM-199 supplemented with 10% BCS) for 7 to 10 days. The results obtained were as follow: The cleavage rate and developmental rate to blastocyst after maturation and IVF were not significantly different between Ham's F-10 with EGF(76.0% vs. 44.0%) and BCS(75.9% vs. 43.6%)(P<0.05). The cleavage rate and development rate to blastocyst after fertilizing by swim-up or Percoll method were not signifciantly(P<0.05) different between swim-up (80.2% vs. 29.2%) and Percoll(81.9% vs. 26.5%) (P<0.05). The cleavage rate in TCM 199(80.5) was signficiantly higher than that in HECM-6 (72.0%) (P<0.05). However, developmental rate to blastocyst using TCM 199 following HECM-6 for 3 or 4 days (42.2%) was significantly higher than that in TCM-199 alone(26.7%)(P<0.05). The cleavage rate and development rate of embryos produced in vitro by exchange timing for HECM-6 media were not significantly different between in day 3(78.6% vs. 45.5%) and day 4(75.0% vs. 43.2%)(P<0.05). The cleavage rate and developmental rate to blastocysts according to co-culture system were not significantly different between with (74.2% vs. 41.4%) and without BOEC(73.95 vs. 43.5%) (P<0.05). The number of blastomere in blastocyst stage after co-culture with or without BOEC was not significantly different (106.7$\pm$5.1 and 96.6$\pm$4.0). In conclusion, the most transferable IVP embryos could be produced from Ham's F-10 medium for IVM, Percoll density gradient method for IVF sperm separation and in vitro culture in HECM-6 until day 3 or day 4, and then transferred into TCM-199 until day 9 within adequate embryo density in culture droplets after insemination.

  • PDF