• Title/Summary/Keyword: IVET

Search Result 4, Processing Time 0.016 seconds

In Vivo Expression Technology (IVET) and Its Application in Plant-Associated Bacteria

  • Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • v.18 no.2
    • /
    • pp.57-62
    • /
    • 2002
  • In vivo expression technology (IVET) has been developed to study bacterial gene expression in Salmonella typhimurium during host infection. The expression of selected genes by IVET has been elevated in vivo but not in vitro. The selected genes turned out to be important for bacterial virulence and/or pathogenicity. IVET depends on a synthetic operon with a promoterless transcriptional fusion between a selection marker gene and a reporter gene. The IVET approach has been successfully adapted in other bacterial pathogens and plant-associated bacteria using different selection markers. Pseudomonas putida suppresses citrus root rot caused by Phytophthora parasitica and enhances citrus seedling growth. The WET strategy was adapted based on a transcriptional fusion, pyrBC'-lacZ, in P. putida to study the bacterial traits important far biocontrol activities. Several genes appeared to be induced on P. parasitica hyphae and were found to be related with metabolism and regulation of gene expression. It is likely that the biocontrol strain took a metabolic advantage from the plant pathogenic fungus and then suppressed citrus root rot effectively. The result was parallel with those from the adaptation of IVET in P. fluorescens, a plant growth promoting rhizobacteria (PGPR). Interestingly, genes encoding components for type III secretion system have been identified as rhizosphere-induced genes in the PGPR strain. The type III secretion system may play a certain role during interaction with its counterpart plants. Application of IVET has been demonstrated in a wide range of bacteria. It is an important strategy to genetically understand complicated bacterial traits in the environment.

IVET-based Identification of Virulence Factors in Vibrio vulnificus MO6-24/O

  • Lee, Ko-Eun;Bang, Ji-Sun;Baek, Chang-Ho;Park, Dae-Kyun;Hwang, Won;Choi, Sang-Ho;Kim, Kum-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.234-243
    • /
    • 2007
  • Vibrio vulnificus is an opportunistic pathogen that causes septicemia in humans. To identify the genes associated with its pathogenicity, in vivo expression technology (IVET) was used to select genes specifically expressed in a host, yet not significantly in vitro. Random lacZ-fusions in the genome of V vulnificus strain MO6-24/O were constructed using an IVET vector, pSG3, which is a suicide vector containing promoterless-aph and -lacZ as reporter genes. A total of ${\sim}18,000$ resulting library clones were then intraperitoneally injected into BALB/c mice using a colony forming unit (CFU) of $1.6{\times}10^6$. Two hours after infection, kanamycin was administered at $200{mu}g$ per gram of mouse weight. After two selection cycles, 11 genes were eventually isolated, which were expressed only in the host. Among these genes, VV20781 and VV21007 exhibiting a homology to a hemagglutinin gene and tolC, respectively, were selected based on having the highest frequency. When compared to wild-type cells, mutants with lesions in these genes showed no difference in the rate of growth rate, yet a significant decrease in cytotoxicity and the capability to form a biofilm.

lacZ- and aph-Based Reporter Vectors for In Vivo Expression Technology

  • Baek, Chang-Ho;Kim, Kun-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.872-880
    • /
    • 2003
  • Three vectors, pSG1, 2, and 3, which facilitate in vivo expression technology (IVET) in Gram-negative bacteria, were developed. Vectors pSG1and 2 are derivatives of ColE1, and pSG3 is a derivative of an R6K replicon. These vectors contain oriT sites that allow mobilization when the RK2 Tra functions are provided in trans. These vectors contain promoterless lacZ (pl-lacZ) and promoterless aph (pl-aph) transcriptionally fused together, which allow qualitative and quantitative measurements of the expression of genes in the genome of bacterial cells. pSG1 and 3 contain gentamicin-resistance genes, and pSG2 carries a streptomycin-/spectinomycin-resistance gene, allowing for selection of recombinants generated by a single crossover between a library fragment cloned into a pSG vector and the identical region in the genome of a bacterial species from which the library fragment originated. These vectors were successfully applied to the generation of random fusions at high rates in the genomes of four representative Gram-negative bacteria. In addition, the expression level of ${\beta}-galactosidase$ and the degree of resistance to kanamycin in cells with fusions generated by these vectors were found to be linearly correlated, proving that these vectors can be used for IVET.