• Title/Summary/Keyword: ITs rDNA

Search Result 1,128, Processing Time 0.023 seconds

Molecular Identification of Gyrodinium impudicum and Gymnodinium sanguineum by Comparing the Sequences of the Internal Transcribed Spacers 1, 2 and 5.8S Ribosomal DNA

  • Kim Gi Young;Ha Myoung-Gyu;Cho Eun Seob;Lee Tae-Ho;Lee Sang Jun;Lee Jae-Dong
    • Fisheries and Aquatic Sciences
    • /
    • v.2 no.1
    • /
    • pp.66-77
    • /
    • 1999
  • The sequences coding for the 5.8S rDNA and the internal transcribed spacers (ITS1 and ITS 2) from the isolates of nine isolates of Gyrodinium impudicum and two isolates of Gymnodinium sanguineum species were amplified, sequenced and compared with the previously known Alexandrium species and Gymnodinium catenatum. The genetic distance analyses based on the sequence alignment indicated that Gymnodinium catenatum and Gyrodinium impudicum species were some related, Alexandrium species was distant. G. catenatum and G. sanguineum were quite separate, but these two species belonged to the same genus. G. impudicum and G. catenatum forming the closet cluster showed some variation in the alignment of ITS regions. The length of ITS1 varied more than that of ITS2 and the length of ITS1 and ITS2 was different for each G. impudicum, Gymnodinium and Alexandrium species. Also, the length of ITS1 was shorter than that of ITS2. However, on the sequences of G. sanguineum, the length of ITS1 was longer about 23 nucleotides than that of ITS2. The phylogenetic analysis and rDNA similarity of G. impudicum and G. catenatum $(59\%)$ is higher than the that of G. catenatum and G. sanguineum $(55\%)$. It was thought that the phylogenetic analysis and the genetic distance revealed that G. impudicum and G. catenatum were clearly different species and G. impudicum may belong to the genus of Gymnodinium.

  • PDF

Comparison of ITS(Internal Transcribed Spacer) and 5.8S rDNA Sequences among varieties and Cultivars in Panax ginseng

  • Yang, Deok-Chun;Yang, Key-Jin;Yoon, Eui-Soo
    • Journal of Photoscience
    • /
    • v.8 no.2
    • /
    • pp.55-60
    • /
    • 2001
  • Ginseng (Panax genus) is one of the most medicinally important genera and consists of highly regarded medicines. Among the species of Panax, the ginseng species is widely known to have most medicinal quality. P. ginseng has 3 varieties, Jakyung, Chunggyung and Hwangsook, discovered in nature with different colors of stem and fruit, Jakyung has two cultivars, Yunpoong and Chunpoong. Rigorous phylogenetic analysis of these varieties and cultivars has been conducted with sequencing of rDNA region. The sequences of ITS1, ITS2 of every varieties and cultivars within P. ginseng were identical. The sequence of 5.8S rDNAs of Hwangsook variety were different from the sequences of 5.8S rDNAs of others by only one base pair at nucleotide position 14. In phylogenetic analysis and predicted RNA secondary structure study, it is assumed that evolution has proceeded from Hwangsook to other varieties. recently.

  • PDF

Morphology and Sequence Analysis of Nuclear 18S rDNA from the Summer Strain of Porphyra suborbiculata (Rhodophyta) in Korea (여름철 서식 한국산 홍조류 둥근돌김 (Porphyra suborbiculata)의 형태 및 18S rDNA 염기서열 분석)

  • JIN Long-Guo;KIM Myung-Sook;CHOI Jae-Suk;CHO Ji-Young;JIN Hyung-Joo;HONG Yong-Ki
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.6
    • /
    • pp.489-495
    • /
    • 2000
  • The 185 ribosomal RNA gene (185 rDNA) of the marine alga Porphyra sp. 723 (Bangiales, Rhodophyta) was amplified using the polymerase chain reaction and its sequence was analysed. The Porphyra species was a summer strain collected on rocks in upper intertidal zone at Ikidae, Pusan on 23rd July 1999. The fronds were $1{\~}5 cm$ long, monostromatic, and orbicular or ovate shaped, They had spinulate processes at margin of the frond, Comparison of this 185 rDNA sequence with the other Forphyra species indicates that Porphyra sp. 723 has the same 185 rDNA sequence derived from Porphyra suborbiculata (NCBI access number; AB 013180) except one base pair substitution in 2327 base pairs.

  • PDF

Isolation of Lactococci Inhibiting Listeria monocytogenes from Kimchi Habitat and Its Identification by 16S rDNA Analysis (김치 서식처에서 Listeria monocytogenes를 억제하는 lactococci의 분리와 16S rDNA분석에 의한 동정)

  • 박은주;한홍의;민봉희
    • The Korean Journal of Ecology
    • /
    • v.22 no.1
    • /
    • pp.45-50
    • /
    • 1999
  • A bacteriocin-producing strain was isolated from kimchi at the early stage of kimchi fermentation. It was identified as Lactococcus lactis by morphological, cultural and physiological characteristics and partial sequence of 16S rDNA. The bacteriocin from isolate had antimicrobial activity against gram positive pathogenic bacteria, such as Listeria monocytogenes. Staphylococcus aureus and several strains of lactic acid bacteria but not to gram negative bacteria, Yersinia enterocolitica. The bacteriocin was sensitive to protease, protease ⅩⅣ, a-chymotrypsin and pepsin but not to lipase, trypsin and lysozyme. The bacteriocin activity was stable at pH 2-11 and temperature of 100 for 10 min. Thus, Listeria monocytogenes could be inhibited by Lactococcus lactis at early stage of fermentation.

  • PDF

PCR-RFLP and Sequence Analysis of the rDNA ITS Region in the Fusarium spp.

  • Min, Byung-Re;Lee, Young-Mi;Choi, Yong-Keel
    • Journal of Microbiology
    • /
    • v.38 no.2
    • /
    • pp.66-73
    • /
    • 2000
  • To investigate the genetic relationship among 12 species belonging to the Fusarium section Martiella, Dlaminia, Gibbosum, Arthrosporiella, Liseola and Elegans, the internal transcribed spacer(ITS) regions of ribosomal DNA (rDNA) were amplified with primer pITS1 and pITS4 using the polymerase chain reaction(PCR). After the amplified products were digested with 7 restriction enzymes, restriction fragment length polymorphism (RFLP) patterns were analyzed. The partial nucleotide sequences of the ITS region were determined and compared. Little variation was observed in the size of the amplified product having sizes of 550bp or 570bp. Based on the RFLP analysis, the 12 species studied were divided into 5 RFLP types. In particular, strains belonging to the section Martiella were separated into three RFLP types. Interestingly, the RFLP type of F. solani f. sp. piperis was identical with that of isolates belonging to the section Elegans. In the dendrogram derived from RFLP analysis of the ITS region, the Fusarium spp. examined were divided into two major groups. In general, section Martiella excluding F. solani f. sp. piperis showed relatively low similarity with the other section. The dendrogram based on the sequencing analysis of the ITS2 region also gave the same results as that of the RFLP analysis. As expected, 5.8S, a coding region, was highly conserved, whereas the ITS2 region was more variable and informative. The difference in the ITS2 region between the length of F. solani and its formae speciales excluding F. solani f. sp. piperis and that of other species was caused by the insertion/deletion of nucleotides in positions 143-148 and 179-192.

  • PDF

Molecular identification of medicinal herbs, Oldenlandia diffusa and Oldenlandia corymbosa based on nrDNA ITS region sequence

  • Sun, Yan-Lin;Wang, Dong;Yeom, Myung-Hun;Kim, Duck-Hee;Kim, Han-Gon;Hong, Soon-Kwan
    • Journal of Plant Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.301-307
    • /
    • 2011
  • The medicinal herb Oldenlandia diffusa is known as a folk medicine for the treatment of hepatitis, sore throat, appendicitis, malignant tumors and urethral infection in Southern China and Korea. Another species O. corymbosa, is also used for the therapy of the similar conditions, however, only O. diffusa is referred to the medicinal herb by Chinese Pharmacopoeia. Due to their similar morphology, O. diffusa and O. corymbosa are often misidentified. To easily identify O. diffusa from O. corymbosa, the phylogenetic utility of nuclear ribosomal DNA (nrDNA) internal transcribed spacers (ITS) were investigated among different O. diffusa and O. corymbosa populations in Korea. The nrDNA ITS sequence of O. diffusa contained 791 bp, with GenBank accession number of JF837601-JF837602. The nrDNA ITS sequence of O. corymbosa was 785-786 bp, with GenBank accession number of JF837603-JF837611. The results showed that there are some certain divergences in the ITS region sequence between both species, even among different populations of the same species. Particularly, O. corymbosa ST-4 population showed the highest dissimilarity of the ITS region sequence with other nine populations of O. corymbosa and two populations of O. diffusa. This consequence makes us further understand the molecular diversification between O. corymbosa and O. diffusa, and help to promote the correct use and safety.

Identification of DNA Variations Using AFLP and SSR Markers in Soybean Somaclonal Variants

  • Lee, Suk-Ha;Jung, Hyun-Soo;Kyujung Van;Kim, Moon-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.1
    • /
    • pp.69-72
    • /
    • 2004
  • Somaclonal variation, defined as phenotypic and genetic variations among regenerated plants from a parental plant, could be caused by changes in chromosome structure, single gene mutation, cytoplasm genetic mutation, insertion of transposable elements, and DNA methylation during plant regeneration. The objective of this study was to evaluate DNA variations among somaclonal variants from the cotyledonary node culture in soybean. A total of 61 soybean somaclones including seven $\textrm{R}_1$ lines and seven $\textrm{R}_2$ lines from Iksannamulkong as well as 27 $\textrm{R}_1$ lines and 20 $\textrm{R}_2$ lines from Jinju 1 were regenerated by organogenesis from the soybean cotyledonary node culture system. Field evaluation revealed no phenotypic difference in major agronomic traits between somaclonal variants and their wild types. AFLP and SSR analyses were performed to detect variations at the DNA level among somaclonal variants of two varieties. Based on AFLP analysis using 36 primer sets, 17 of 892 bands were polymorphic between Iksannamulkong and its somaclonal variants and 11 of 887 bands were polymorphic between Jinju 1 and its somaclonal variants, indicating the presence of DNA sequence change during plant regeneration. Using 36 SSR markers, two polymorphic SSR markers were detected between Iksannamulkong and its somaclonal variants. Sequence comparison amplified with the primers flanking Satt545 showed four additional stretches of ATT repeat in the variant. This suggests that variation at the DNA level between somaclonal variants and their wild types could provide basis for inducing mutation via plant regeneration and broadening crop genetic diversity.

Analysis of Chromosome Composition of Gastrodia elata Blume by Fluorescent in situ Hybridization using rDNA and Telomeric Repeat Probes (rDNA와 말단소체 반복서열 탐침을 이용한 천마의 FISH 염색체 조성 분석)

  • Zhou, Hui Chao;Park, Eung Jun;Kim, Hyun Hee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.2
    • /
    • pp.113-118
    • /
    • 2018
  • Background: Gastrodia elata Blume is a saprophytic perennial plant in the Orchidaceae family, because of its agricultural and medicinal effectiveness, researchers focus on its genome and chemical components. However, cytogenetic information based on the chromosome structure and composition to construct chromosomal backbone for genome sequencing research and for the development and breeding of plants is very limited. Methods and Results: We determined the metaphase chromosome composition of the G. elata genome by fluorescence in situ hybridization (FISH) using 5S and 45S rDNAs and telomeric repeat probes. The nuclear genome of G. elata was organized into 2 n = 36, with relatively small ($2.71-5.50{\mu}m$)chromosomes that showed gradual decrease in size. Conglutination phenomenon was observed among the metaphase chromosomes, and it was distinguished from that in other plant metaphase chromosome spreads. One pair of signal was detected for each 5S and 45S rDNA in the pericentromeric region and interstitial region on the short arm of chromosomes 10 and 4, respectively, and telomeric DNA signals were detected in the terminal region of most chromosomes. Conclusions: To our knowledge, this is the first FISH chromosome composition result in G. elata and could be useful in more comprehensive molecular cytogenetic and genomic analyses as well as breeding programs of the medicinal plant G. elata.

Ansanella granifera gen. et sp. nov. (Dinophyceae), a new dinoflagellate from the coastal waters of Korea

  • Jeong, Hae Jin;Jang, Se Hyeon;Moestrup, Ojvind;Kang, Nam Seon;Lee, Sung Yeon;Potvin, Eric;Noh, Jae Hoon
    • ALGAE
    • /
    • v.29 no.2
    • /
    • pp.75-99
    • /
    • 2014
  • A small dinoflagellate, Ansanella granifera gen. et sp. nov., was isolated from estuarine and marine waters, and examined by light microscopy, scanning electron microscopy, and transmission electron microscopy. In addition, the identity of the sequences (3,663-bp product) of the small subunit (SSU), internal transcribed spacer (ITS) region (ITS1, 5.8S, ITS2), and D1-D3 large subunit (LSU) rDNA were determined. This newly isolated, thin-walled dinoflagellate has a type E eyespot and a single elongated apical vesicle, and it is closely related to species belonging to the family Suessiaceae. A. granifera has 10-14 horizontal rows of amphiesmal vesicles, comparable to Biecheleria spp. and Biecheleriopsis adriatica, but greater in number than in other species of the family Suessiaceae. Unlike Biecheleria spp. and B. adriatica, A. granifera has grana-like thylakoids. Further, A. granifera lacks a nuclear fibrous connective, which is present in B. adriatica. B. adriatica and A. granifera also show a morphological difference in the shape of the margin of the cingulum. In A. granifera, the cingular margin formed a zigzag line, and in B. adriatica a straight line, especially on the dorsal side of the cell. The episome is conical with a round apex, whereas the hyposome is trapezoidal. Cells growing photosynthetically are $10.0-15.0{\mu}m$ long and $8.5-12.4{\mu}m$ wide. The cingulum is descending, the two ends displaced about its own width. Cells of A. granifera contain 5-8 peripheral chloroplasts, stalked pyrenoids, and a pusule system, but lack nuclear envelope chambers, a nuclear fibrous connective, lamellar body, rhizocysts, and a peduncle. The main accessory pigment is peridinin. The SSU, ITS regions, and D1-D3 LSU rDNA sequences differ by 1.2-7.4%, >8.8%, and >2.5%, respectively, from those of the other known genera in the order Suessiales. Moreover, the SSU rDNA sequence differed by 1-2% from that of the three most closely related species, Polarella glacialis, Pelagodinium bei, and Protodinium simplex. In addition, the ITS1-5.8S-ITS2 rDNA sequence differed by 16-19% from that of the three most closely related species, Gymnodinium corii, Pr. simplex, and Pel. bei, and the LSU rDNA sequence differed by 3-4% from that of the three most closely related species, Protodinium sp. CCMP419, B. adriatica, and Gymnodinium sp. CCMP425. A. granifera had a 51-base pair fragment in domain D2 of the large subunit of ribosomal DNA, which is absent in the genus Biecheleria. In the phylogenetic tree based on the SSU and LSU sequences, A. granifera is located in the large clade of the family Suessiaceae, but it forms an independent clade.

Sequence Analysis of Nuclear 18S rDNA from Porphya tenera (Rhodophyta) in Korea (한국산 참김 (Porphya tenera)의 핵 18S rDNA염기서열 분석)

  • JIN Long-Guo;KIM Myung-Sook;CHOI Jae-Suk;CHO Ji-Young;JIN Duck-Hee;HONG Yong-Ki
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.1
    • /
    • pp.35-38
    • /
    • 2003
  • Nuclear 18S ribosomal RNA gene (185 rDNA) from the aquaculturable seaweed Porphya tenera (Bangiales, Rhodophyta) was amplified using the polymerase chain reaction and its sequence was analysed. Complete 185 rDNA has an 1,822 bp exon and a 510 bp intron. The G+C contents of exon and intron were $48.68\%\;and\;54,90\%,$ respectively. The exon sequence showed $99.6\%$ homology to the GebBank accession number AB029880 of the Japanese P. tenera. The intron region that is inserted upstream between 568 and 1,079 showed $43.6\%$ homology to the AB029880.