• Title/Summary/Keyword: ITTC-1978 extrapolation method

Search Result 2, Processing Time 0.017 seconds

A Study on a Characteristic of the Three Friction Resistance Lines (세가지 마찰저항곡선의 특성에 관한 연구)

  • Park, Dong-Woo;Kang, Seon-Hyung;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.4
    • /
    • pp.484-495
    • /
    • 2010
  • The speed-power prediction is one of the most important functions of towing-tank facilities. Generally, ITTC-1978 extrapolation method is employed for the full-scale powering prediction. During the procedure, the friction resistance line plays a major role to predict both model- and full-scale resistance. In this paper, the form factors determined by ITTC-1957 line for several kinds of vessels are compared with the values obtained using the lines proposed by Grigson(1993) and Katsui et al.(2005). Resistance and self-propulsion coefficients predicted by three different friction resistance lines are minutely analyzed. Finally, brake powers and revolutions estimated by flat plate friction resistance lines of Grigson and Katsui et al. are compared with the results obtained from ITTC-1957 line.

Application of Monte Carlo simulations to uncertainty assessment of ship powering prediction by the 1978 ITTC method

  • Seo, Jeonghwa;Park, Jongyeol;Go, Seok Cheon;Rhee, Shin Hyung;Yoo, Jaehoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.292-305
    • /
    • 2021
  • The present study concerns uncertainty assessment of powering prediction from towing tank model tests, suggested by the International Towing Tank Conference (ITTC). The systematic uncertainty of towing tank tests was estimated by allowance of test setup and measurement accuracy of ITTC. The random uncertainty was varied from 0 to 8% of the measurement. Randomly generated inputs of test conditions and measurement data sets under systematic and random uncertainty are used to statistically analyze resistance and propulsive performance parameters at the full scale. The error propagation through an extrapolation procedure is investigated in terms of the sensitivity and coefficient of determination. By the uncertainty assessment, it is found that the uncertainty of resultant powering prediction was smaller than the test uncertainty.