• Title/Summary/Keyword: ITS1 sequencing

검색결과 475건 처리시간 0.03초

전달손실 최대화를 위한 위상최적화기반 1차원 흡차음시스템의 최적 배열 설계 (Optimal sequencing of 1D acoustic system for sound transmission loss maximization using topology optimization method)

  • 김은일;이중석;김윤영;김정수;강연준
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.309-314
    • /
    • 2007
  • Optimal layer sequencing of a multi-layered acoustical foam is solved to maximize its sound transmission loss. A foam consisting of air and poroelastic layers can be optimized when a limited amount of a poroelastic material is allowed. By formulating the sound transmission loss maximization problem as a one dimensional topology optimization problem, optimal layer sequencing and thickness were systematically found for several frequencies. For optimization, the transmission losses of air and poroelastic layers were calculated by the transfer matrix derived from Biot's theory. By interpolating five intrinsic parameters among several poroelastic material parameters, dear air-poroelastic layer distributions were obtained; no filtering or post-processing was necessary. The optimized foam layouts by the proposed method were shown to differ depending on the frequency of interest.

  • PDF

Validation of Customized Cancer Panel for Detecting Somatic Mutations and Copy Number Alterations

  • Choi, Su-Hye;Jung, Seung-Hyun;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • 제15권4호
    • /
    • pp.136-141
    • /
    • 2017
  • Accurate detection of genomic alterations, especially druggable hotspot mutations in tumors, has become an essential part of precision medicine. With targeted sequencing, we can obtain deeper coverage of reads and handle data more easily with a relatively lower cost and less time than whole-exome or whole-genome sequencing. Recently, we designed a customized gene panel for targeted sequencing of major solid cancers. In this study, we aimed to validate its performance. The cancer panel targets 95 cancer-related genes. In terms of the limit of detection, more than 86% of target mutations with a mutant allele frequency (MAF) <1% can be identified, and any mutation with >3% MAF can be detected. When we applied this system for the analysis of Acrometrix Oncology Hotspot Control DNA, which contains more than 500 COSMIC mutations across 53 genes, 99% of the expected mutations were robustly detected. We also confirmed the high reproducibility of the detection of mutations in multiple independent analyses. When we explored copy number alterations (CNAs), the expected CNAs were successfully detected, and this result was confirmed by target-specific genomic quantitative polymerase chain reaction. Taken together, these results support the reliability and accuracy of our cancer panel in detecting mutations. This panel could be useful for key mutation profiling research in solid tumors and clinical translation.

Screening and functional validation of lipid metabolism-related lncRNA-46546 based on the transcriptome analysis of early embryonic muscle tissue in chicken

  • Ruonan, Chen;Kai, Liao;Herong, Liao;Li, Zhang;Haixuan, Zhao;Jie, Sun
    • Animal Bioscience
    • /
    • 제36권2호
    • /
    • pp.175-190
    • /
    • 2023
  • Objective: The study was conducted to screen differentially expressed long noncoding RNA (lncRNA) in chickens by high-throughput sequencing and explore its mechanism of action on intramuscular fat deposition. Methods: Herein, Rose crown and Cbb broiler chicken embryo breast and leg muscle lncRNA and mRNA expression profiles were constructed by RNA sequencing. A total of 96 and 42 differentially expressed lncRNAs were obtained in Rose crown vs Cobb broiler chicken breast and leg muscle, respectively. lncRNA-ENSGALT00000046546, with high interspecific variability and a potential regulatory role in lipid metabolism, and its predicted downstream target gene 1-acylglycerol-3-phosphate-O-acyltransferase 2 (AGPAT2), were selected for further study on the preadipocytes. Results: lncRNA-46546 overexpression in chicken preadipocyte 2 cells significantly increased (p<0.01) the expression levels of AGPAT2 and its downstream genes diacylglycerol acyltransferase 1 and diacylglycerol acyltransferase 2 and those of the fat metabolism-related genes peroxisome proliferator-activated receptor γ, CCAAT/enhancer binding protein α, fatty acid synthase, sterol regulatory element-binding transcription factor 1, and fatty acid binding protein 4. The lipid droplet concentration was higher in the overexpression group than in the control cells, and the triglyceride content in cells and medium was also significantly increased (p<0.01). Conclusion: This study preliminarily concludes that lncRNA-46546 may promote intramuscular fat deposition in chickens, laying a foundation for the study of lncRNAs in chicken early embryonic development and fat deposition.

통신망에서의 정보전파 방법의 평가에 관한 연구 (Evaluation of Information Dissemination Methods in a Communication Network)

  • 고재문
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제8권1호
    • /
    • pp.109-129
    • /
    • 1999
  • This study deals with the problem of information dissemination in a communication network, which is defined to be the process whereby a set of messages, generated by an originator, is transmitted to all the members within the network. Since this type of message generally includes control data to manage the network or global information that all members should know, it is to be required to transmit it to all the members as soon as possible. In this study, it is assumed that a member can either transmit or receive a message and an informed member can transmit it to only one of its neighbors at time. This type of transmission is called 'local broadcasting' Several schemes of call sequencing are designed for a general-type network with nonuniform edge transmission times, and then computer simulations are performed. Some heuristics for information dissemination are proposed and tested. For this, optimal call sequence in a tree-type network, sequencing theory and graph theory are applied. The result shows that call sequencing based on the shortest path tree is the most desirable.

  • PDF

A semi-automatic cell type annotation method for single-cell RNA sequencing dataset

  • Kim, Wan;Yoon, Sung Min;Kim, Sangsoo
    • Genomics & Informatics
    • /
    • 제18권3호
    • /
    • pp.26.1-26.6
    • /
    • 2020
  • Single-cell RNA sequencing (scRNA-seq) has been widely applied to provide insights into the cell-by-cell expression difference in a given bulk sample. Accordingly, numerous analysis methods have been developed. As it involves simultaneous analyses of many cell and genes, efficiency of the methods is crucial. The conventional cell type annotation method is laborious and subjective. Here we propose a semi-automatic method that calculates a normalized score for each cell type based on user-supplied cell type-specific marker gene list. The method was applied to a publicly available scRNA-seq data of mouse cardiac non-myocyte cell pool. Annotating the 35 t-stochastic neighbor embedding clusters into 12 cell types was straightforward, and its accuracy was evaluated by constructing co-expression network for each cell type. Gene Ontology analysis was congruent with the annotated cell type and the corollary regulatory network analysis showed upstream transcription factors that have well supported literature evidences. The source code is available as an R script upon request.

A Comparison of the Ability of Fungal Internal Transcribed Spacers and D1/D2 Domain Regions to Accurately Identify Candida glabrata Clinical Isolates Using Sequence Analysis

  • Kang, Min-Ji;Choi, Yoon-Sung;Kim, Sunghyun
    • 대한의생명과학회지
    • /
    • 제24권4호
    • /
    • pp.430-434
    • /
    • 2018
  • Candida glabrata is the second most prevalent causative agent for candidiasis following C. albicans. The opportunistic yeast, C. glabrata, is able to cause the critical bloodstream infections in hospitalized patients. Conventional identification methods for yeasts are often time consuming and labor intensive. Therefore, recent studies on sequence-based identification have been conducted. Recently, sequencing the D1/D2 domain of the large subunit ribosomal RNA gene and the internal transcribed spacers (ITS) 1 and ITS2 regions of the ribosomal DNA has proven useful for DNA-based identification of most species of fungi. In the present study, therefore, fungal ITS and D1/D2 domain regions were targeted and analyzed by DNA sequencing for the accurate identification of C. glabrata clinical isolates. A total of 102 C. glabrata clinical isolates from various clinical samples including bloodstream, catheterized urine, bile and other body fluids were used in the study. The results of the DNA sequence analysis showed that the mean standard deviation of species identity percent score between ITS and D1/D2 domain regions was $97.8%{\pm}2.9$ and $99.7%{\pm}0.46$, respectively. These results revealed that the D1/D2 domain region might be a better target for identifying C. glabrata clinical isolates based on DNA sequences than the ITS1 and ITS2 regions. However, in order to evaluate the usefulness of D1/D2 domain region for species identification of all Candida species, other Candida species such as C. albicans, C. tropicalis, C. dubliniensis, and C. krusei should be verified in further studies additionally.

A streamlined pipeline based on HmmUFOtu for microbial community profiling using 16S rRNA amplicon sequencing

  • Hyeonwoo Kim;Jiwon Kim;Ji Won Cho;Kwang-Sung Ahn;Dong-Il Park;Sangsoo Kim
    • Genomics & Informatics
    • /
    • 제21권3호
    • /
    • pp.40.1-40.11
    • /
    • 2023
  • Microbial community profiling using 16S rRNA amplicon sequencing allows for taxonomic characterization of diverse microorganisms. While amplicon sequence variant (ASV) methods are increasingly favored for their fine-grained resolution of sequence variants, they often discard substantial portions of sequencing reads during quality control, particularly in datasets with large number samples. We present a streamlined pipeline that integrates FastP for read trimming, HmmUFOtu for operational taxonomic units (OTU) clustering, Vsearch for chimera checking, and Kraken2 for taxonomic assignment. To assess the pipeline's performance, we reprocessed two published stool datasets of normal Korean populations: one with 890 and the other with 1,462 independent samples. In the first dataset, HmmUFOtu retained 93.2% of over 104 million read pairs after quality trimming, discarding chimeric or unclassifiable reads, while DADA2, a commonly used ASV method, retained only 44.6% of the reads. Nonetheless, both methods yielded qualitatively similar β-diversity plots. For the second dataset, HmmUFOtu retained 89.2% of read pairs, while DADA2 retained a mere 18.4% of the reads. HmmUFOtu, being a closed-reference clustering method, facilitates merging separately processed datasets, with shared OTUs between the two datasets exhibiting a correlation coefficient of 0.92 in total abundance (log scale). While the first two dimensions of the β-diversity plot exhibited a cohesive mixture of the two datasets, the third dimension revealed the presence of a batch effect. Our comparative evaluation of ASV and OTU methods within this streamlined pipeline provides valuable insights into their performance when processing large-scale microbial 16S rRNA amplicon sequencing data. The strengths of HmmUFOtu and its potential for dataset merging are highlighted.

Genotyping of a Korean isolate of Toxoplasma gondii by multilocus PCR-RFLP and microsatellite analysis

  • Quan, Juan-Hua;Kim, Tae-Yun;Choi, In-Uk;Lee, Young-Ha
    • Parasites, Hosts and Diseases
    • /
    • 제46권2호
    • /
    • pp.105-108
    • /
    • 2008
  • Although the Korean isolate KI-1 of Toxoplasma gondii has been considered to be a virulent type I lineage because of its virulent clinical manifestations, its genotype is unclear. In the present study, genotyping of the KI-1 was performed by multilocus PCR-RFLP and microsatellite sequencing. For 9 genetic markers (c22-8, c29-2, L358, PK1, SAG2, SAG3, GRA6, BTUB, and Apico), the KI-1 and RH strains exhibited typical PCR-RFLP patterns identical to the type I strains. DNA sequencing of tandem repeats in 5 microsatellite markers (B17, B18, TUB2, W35, and TgM-A) of the KI-1 also revealed patterns characteristic of the type I. These results provide strong genetic evidence that KI-1 is a type I lineage of T. gondii.

PAIVS: prediction of avian influenza virus subtype

  • Park, Hyeon-Chun;Shin, Juyoun;Cho, Sung-Min;Kang, Shinseok;Chung, Yeun-Jun;Jung, Seung-Hyun
    • Genomics & Informatics
    • /
    • 제18권1호
    • /
    • pp.5.1-5.5
    • /
    • 2020
  • Highly pathogenic avian influenza (HPAI) viruses have caused severe respiratory disease and death in poultry and human beings. Although most of the avian influenza viruses (AIVs) are of low pathogenicity and cause mild infections in birds, some subtypes including hemagglutinin H5 and H7 subtype cause HPAI. Therefore, sensitive and accurate subtyping of AIV is important to prepare and prevent for the spread of HPAI. Next-generation sequencing (NGS) can analyze the full-length sequence information of entire AIV genome at once, so this technology is becoming a more common in detecting AIVs and predicting subtypes. However, an analysis pipeline of NGS-based AIV sequencing data, including AIV subtyping, has not yet been established. Here, in order to support the pre-processing of NGS data and its interpretation, we developed a user-friendly tool, named prediction of avian influenza virus subtype (PAIVS). PAIVS has multiple functions that support the pre-processing of NGS data, reference-guided AIV subtyping, de novo assembly, variant calling and identifying the closest full-length sequences by BLAST, and provide the graphical summary to the end users.

Transcriptome sequencing revealed the inhibitory mechanism of ketoconazole on clinical Microsporum canis

  • Wang, Mingyang;Zhao, Yan;Cao, Lingfang;Luo, Silong;Ni, Binyan;Zhang, Yi;Chen, Zeliang
    • Journal of Veterinary Science
    • /
    • 제22권1호
    • /
    • pp.4.1-4.13
    • /
    • 2021
  • Background: Microsporum canis is a zoonotic disease that can cause dermatophytosis in animals and humans. Objectives: In clinical practice, ketoconazole (KTZ) and other imidazole drugs are commonly used to treat M. canis infection, but its molecular mechanism is not completely understood. The antifungal mechanism of KTZ needs to be studied in detail. Methods: In this study, one strain of fungi was isolated from a canine suffering with clinical dermatosis and confirmed as M. canis by morphological observation and sequencing analysis. The clinically isolated M. canis was treated with KTZ and transcriptome sequencing was performed to identify differentially expressed genes in M. canis exposed to KTZ compared with those unexposed thereto. Results: At half-inhibitory concentration (½MIC), compared with the control group, 453 genes were significantly up-regulated and 326 genes were significantly down-regulated (p < 0.05). Quantitative reverse transcription polymerase chain reaction analysis verified the transcriptome results of RNA sequencing. Gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that the 3 pathways of RNA polymerase, steroid biosynthesis, and ribosome biogenesis in eukaryotes are closely related to the antifungal mechanism of KTZ. Conclusions: The results indicated that KTZ may change cell membrane permeability, destroy the cell wall, and inhibit mitosis and transcriptional regulation through CYP51, SQL, ERG6, ATM, ABCB1, SC, KER33, RPA1, and RNP genes in the 3 pathways. This study provides a new theoretical basis for the effective control of M. canis infection and the effect of KTZ on fungi.