• Title/Summary/Keyword: ITS rDNA sequences

Search Result 385, Processing Time 0.029 seconds

Intrageneric Relationships of Trichoderma Based on Internal Transcribed Spacers and 5.8S rDNA Nucleotide Sequences

  • Kim, Gi-Young;Lee, Goang-Jae;Ha, Myung-Gyu;Lee, Tae-Ho;Lee, Jae-Dong
    • Mycobiology
    • /
    • v.28 no.1
    • /
    • pp.11-16
    • /
    • 2000
  • The nucleotide sequences of the internal transcribed spacer (ITS) regions of the ribosomal DNA including the 5.8S ribosomal RNA gene (rDNA) have been determined for 11 species in order to analyze their intrageneric relationships. The total length of these sequences ranged from 530 nucleotides for Trichoderma reesei KCTC 1286 to 553 nucleotide for Trichoderma koningii IAM 12534. Generally speaking, the length of ITS1 region was about 30 nucleotides longer than that of the ITS2 region. Also, the sequences of 5.8S rDNA were more conserved in length and variation than those of ITS regions. Although the variable ITS sequences were often ambiguously aligned, the conserved sites were also found. Thus, a neighbor-joining tree was constructed using the full sequence data of the ITS regions and the 5.8S rDNA. The Trichoderma genus used to be grouped on the basis of the morphological features and especially the shape of phialides needs to be reexamined. The phylogenetic tree displayed the presence of monophylogeny in the species of Trichoderma. Therefore, it was difficult to distinguish the intrageneric relationships in the Trichoderma genus.

  • PDF

A Revision of the Phylogeny of Helicotylenchus Steiner, 1945 (Tylenchida: Hoplolaimidae) as Inferred from Ribosomal and Mitochondrial DNA

  • Abraham Okki, Mwamula;Oh-Gyeong Kwon;Chanki Kwon;Yi Seul Kim;Young Ho Kim;Dong Woon Lee
    • The Plant Pathology Journal
    • /
    • v.40 no.2
    • /
    • pp.171-191
    • /
    • 2024
  • Identification of Helicotylenchus species is very challenging due to phenotypic plasticity and existence of cryptic species complexes. Recently, the use of rDNA barcodes has proven to be useful for identification of Helicotylenchus. Molecular markers are a quick diagnostic tool and are crucial for discriminating related species and resolving cryptic species complexes within this speciose genus. However, DNA barcoding is not an error-free approach. The public databases appear to be marred by incorrect sequences, arising from sequencing errors, mislabeling, and misidentifications. Herein, we provide a comprehensive analysis of the newly obtained, and published DNA sequences of Helicotylenchus, revealing the potential faults in the available DNA barcodes. A total of 97 sequences (25 nearly full-length 18S-rRNA, 12 partial 28S-rRNA, 16 partial internal transcribed spacer [ITS]-rRNA, and 44 partial cytochrome c oxidase subunit I [COI] gene sequences) were newly obtained in the present study. Phylogenetic relationships between species are given as inferred from the analyses of 103 sequences of 18S-rRNA, 469 sequences of 28S-rRNA, 183 sequences of ITS-rRNA, and 63 sequences of COI. Remarks on suggested corrections of published accessions in GenBank database are given. Additionally, COI gene sequences of H. dihystera, H. asiaticus and the contentious H. microlobus are provided herein for the first time. Similar to rDNA gene analyses, the COI sequences support the genetic distinctness and validity of H. microlobus. DNA barcodes from type material are needed for resolving the taxonomic status of the unresolved taxonomic groups within the genus.

Phylogenetic Analysis of the Genus Phellinus by Comparing the Sequences of Internal Transcribed Spacers and 5.8S Ribosomal DNA (Ribosomal DNA의 Internal Transcribed Spacer(ITS) 부위의 염기서열분석에 의한 Phellinus속의 계통분석에 관한 연구)

  • Chung, Ji-Won;Kim, Gi-Young;Ha, Myung-Gui;Lee, Tae-Ho;Lee, Jae-Dong
    • The Korean Journal of Mycology
    • /
    • v.27 no.2 s.89
    • /
    • pp.124-131
    • /
    • 1999
  • This study was carried out to identify the phylogenetic relationship among Phellinus species by comparing the DNA sequences of the 5.8S ribosomal DNA (rDNA) and the internal transcribed spacers (ITSs), ITS1 and ITS2 regions. Two primers from the 3' end of 18S rDNA and the 5' end of 28S rDNA sequences were chosen to amplify the specific ITS regions of Phellinus spp. Phellinus strains used in the study were divided into four clusters by the phylogenetic tree based on the amplified regions of ITS and 5.8S rDNA sequences. The first cluster consist of Phellinus hartigii IMSNU 32041 and Phellinus robustus IMSNU 32068, and the second cluster consists of Phellinus linteus strains and Phellinus weirianus IMSNU 32021. Phellinus laevigatus KCTC 6229, KCTC 6230 and Phellinus igniarius KCTC 6227, KCTC 6228 belong to the third cluster. Finally, Phellinus chrysoloma KCTC 6225 and Phellinus chrysoloma KCTC 6226 are the fourth cluster. In the second cluster the differentiation between Phellinus linteus strains and Phellinus weirianus species were not possible by the comparison of the ITS sequences. These results revealed that Phellinus linteus and Phellinus weirianus cannot be established the concept of species level only by the ITS sequences. Therefore, both physiological and molecular biological methods as well as the sequences of type strains are necessary to classify the strains of these two species accurately. The comparison of the ITS sequences of four Phellinus species indicated that the sequences of the ITS1 generally are more divergent than those of the ITS2. Although the ITS sequences are varied in some species, the conserved regions in both ITS1 and ITS2 are useful tool to differentiate the species. Phellinus linteus and related species have their specific sequences in the ITS1 compared to the other species.

  • PDF

Phylogenetic and Chemical Analyses of Cirsium pendulum and Cirsium setidens Inhabiting Korea (국내에 자생하는 큰엉겅퀴와 고려엉겅퀴의 분자유전학적 및 화학적 분석)

  • Yoo, Sun-Kyun;Bae, Young-Min
    • Journal of Life Science
    • /
    • v.22 no.8
    • /
    • pp.1120-1125
    • /
    • 2012
  • Cirsium pendulum plants were collected from Hongcheon, Pyeongchang, Wonju, Yangyang in Kangwondo, Gapyeong in Gyeongkido, and Choongju in Choongcheongbukdo. Cirsium setidens plants were collected from Taebaek in Kangwondo and Bonghwa in Kyeongsangbukdo. Genomic DNA was prepared from those plants and used for the amplification of 18S rDNA, ITS1, 5.8S rDNA, ITS2, and part of 28S rDNA. The PCR products were sequenced, and the sequence was deposited in the GenBank. The comparison of those sequences has revealed that the rDNA sequences are identical for all six C. pendulum plants, but that the ITS1 and ITS2 sequences contain variable nucleotides. The two C. setidens plants had different nucleotides in 18S rDNA, ITS1, and ITS2. The comparison of the DNA sequences of C. pendulum and C. setidens collected in this study with C. pendulum of Hokkaido in Japan and C. japonicum of Anhui in China indicated that the plants of those three species are clearly divided into three distinct groups. The silymarin content of the collected plants was analyzed and turned out to be quite high. Therefore, it has been found that both C. pendulum and C. setidens plants are producing large amounts of silymarin, which has been reported to have various medicinal effects.

Phylogenetic Analysis of Caterpillar Fungi by Comparing ITS 1-5.8S-ITS 2 Ribosomal DNA Sequences

  • Park, Joung-Eon;Kim, Gi-Young;Park, Hyung-Sik;Nam, Byung-Hyouk;An, Won-Gun;Cha, Jae-Ho;Lee, Tae-Ho;Lee, Jae-Dong
    • Mycobiology
    • /
    • v.29 no.3
    • /
    • pp.121-131
    • /
    • 2001
  • This study was carried out to identify the phylogenetic relationships among several caterpillar fungi by comparing the sequences of internal transcribed spacer regions(ITS1 and ITS2) and 5.8S ribosomal DNA(rDNA) repeat unit. The sequences of ITS1, ITS2, and the 5.8S rDNA from 10 strains of Cordyceps species, 12 strains of Paecilomyces, 3 strains of Beauveria, 2 strains of Metarhizium and 1 strains of Hirsutella were amplified, determined and compared with the previously known Cordyceps species. The sequences of 5.8S rDNA were more conserved in length and variation than those of ITS regions. Although the variable ITS sequences were often ambiguously aligned, the conserved sites could be found. In the phylogenetic tree, the species generally divided into three clusters, supported by their morphology and/or host ranges. The 5.8S rDNA and TTS1 sequences among 10 species of Cordyceps militaris were identical and only one base pair in ITS2 sequence was different. Cordyceps sinensis and Cordyceps ophioglossoides were also clearly different, although they belonged to the same cluster. The Geniank database search of species revealed sister taxa of an entomogenous fungus. Metarhizium was used as an putgroup in all taxa.

  • PDF

Phylogeny of Korean Rhus spp. Based on ITS and rbcL Sequences (ITS 및 rbcL 염기서열에 근거한 한국 자생 옻나무속의 계통분류)

  • Lee, Won-Kyung;Kim, Myong-Jo;Heo, Kweon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.1
    • /
    • pp.60-66
    • /
    • 2004
  • This study was carried out to confirm the phylogenetic relationships in Korean Rhus species. Sequences from internal transcribed spacers (ITS) of nuclear ribosomal DNA and rbcL gene of chloroplast DNA were determined. Cotinus coggygria was selected as outgroup because it is closest allied with Rhus in Anacardiaceae. Also, ingroup was limited as six Korean Rhus species. ITS 1 sequences in six species of Rhus and one species of Cotinus ranged from 246 to 253 bp and ITS 2 sequences from 234 to 244 bp. Concerning the G+C content of the studied taxa, ITS 1 sequences ranged from 58.0 to 68.13% and ITS 2 from 59.75 to 68.46%. On the other hand, rbcL sequences were same size in the all species examined by 1,428 bp. G+C contents of rbcL sequences were ranged from 43.56 to 43.77% which means there are nearly no different from interspecies each other. Phylogenetic tree strongly supports the colse relationships between R. succedanea and R. sylvestris. Rhus javanica and Cotinus coggygria were also closely allied with each other in ITS and rbcL trees. Therefore, R. javanica was regarded as most primitive species among the Korean Rhus species. ITS 1 region of nuclear ribosomal DNA was suggested as very useful taxonomical marker for genus Rhus.

18S Ribosomal DNA Sequences Provide Insight into the Phylogeny of Patellogastropod Limpets (Mollusca: Gastropoda)

  • Yoon, Sook Hee;Kim, Won
    • Molecules and Cells
    • /
    • v.23 no.1
    • /
    • pp.64-71
    • /
    • 2007
  • To investigate the phylogeny of Patellogastropoda, the complete 18S rDNA sequences of nine patellogastropod limpets Cymbula canescens (Gmelin, 1791), Helcion dunkeri (Krauss, 1848), Patella rustica Linnaeus, 1758, Cellana toreuma (Reeve, 1855), Cellana nigrolineata (Reeve, 1854), Nacella magellanica Gmelin, 1791, Nipponacmea concinna (Lischke, 1870), Niveotectura pallida (Gould, 1859), and Lottia dorsuosa Gould, 1859 were determined. These sequences were then analyzed along with the published 18S rDNA sequences of 35 gastropods, one bivalve, and one chiton species. Phylogenetic trees were constructed by maximum parsimony, maximum likelihood, and Bayesian inference. The results of our 18S rDNA sequence analysis strongly support the monophyly of Patellogastropoda and the existence of three subgroups. Of these, two subgroups, the Patelloidea and Acmaeoidea, are closely related, with branching patterns that can be summarized as [(Cymbula + Helcion) + Patella] and [(Nipponacmea + Lottia) + Niveotectura]. The remaining subgroup, Nacelloidea, emerges as basal and paraphyletic, while its genus Cellana is monophyletic. Our analysis also indicates that the Patellogastropoda have a sister relationship with the order Cocculiniformia within the Gastropoda.

Phylogenetic Analysis of the Entomopathogenic Fungal Species and Taxonomical Positions of Their Commercial Products (동충하초의 계통분류 및 시판동충하초의 분류학적 위치)

  • 김순한;이영자;김인복;김미경;한정아;홍무기;이순호;이재동
    • Journal of Life Science
    • /
    • v.13 no.4
    • /
    • pp.400-411
    • /
    • 2003
  • This study was carried out to identify the phylogenetic relationship and to know the distribution of the entomopathogenic fungi by comparing the DNA sequences of internal transcribed spacer regions (ITS1 and ITS2) and 5.8S ribosomal DNA (rDNA) repeat unit. The entomopathogenic fungi had their specific sequences in ITS1 and 2 regions depending on species. The comparison of the ITS sequences of standard strains indicated that the sequences ITS1 were more variable than those of ITS2. It seems that Paecilomyces tenuipes, Isaria japonicus and P. japonicus are the same species but called as different names because of very similar sequences, and unidentified Paecilomyces sp. KACC 40220 and KACC 40656 showed identical sequences to P. tenuipes. Thirty six strains of the commercial products of entomopathogenic fungi used in this study were divided into four groups by the phylogenetic analysis based on 5.85 rDNA and ITS regions. We found twenty-three strains were P. tenuipes / japonica, eleven strains were C. militaris, and other two strains were Beauveria bassiana and C. multiaxialis, respectively.

Phylogenetic Relationship among Several Korean Coastal Red Tide Dinoflagellates Based on their rDNA Internal Transcribed Spacer Sequences

  • Cho, Eun-Seob;Kim, Gi-Yong;Park, Hyung-Sik;Nam, Byung-Hyouk;Lee, Jae-Dong
    • Journal of Life Science
    • /
    • v.11 no.2
    • /
    • pp.74-80
    • /
    • 2001
  • The nucleotide sequences of the internal transcribed spacer regions (ITS1 and ITS2) of ribosomal DNA (rDNA), and the 5.85 rRNA gene, have been determined for 13 strains of dinoflagellates in order to analyze the phylo-genetic relationship. The DNA sequences contained considerable variation in the ITS regions, but little in the 5.85 rDNA. In addition, the ITS1 was more variable than the ITS2 in all species examined. The nucleotide length of this region varied from 519 bp to 596 bp depending on the taxa. The investigated taxa were divided into three large groups based on the ITS length, i. e., a group with short ITS region (A. fraterculus and Alexandrium sp.), a with ITS region group (P. micans, P. minimum and P. triestinum) and a with ITS region group (G. impudicum, C. polykrikoides, G. sanguineum, G. catenatum and H. triquetra). The relationship between nucleotide length of ITS1 and that of ITS2 was negative, whereas G+C content and nucleotide length showed positive correlation. In phylogenetic analyses producing NJ trees, the topology was similar cluster and clearly divided the taxa into three groups based on 5.8S rDNA that were similar to those based on morphological characteristics. In particular, G. impudicum was more closely related to G. catenatum than to C. polykrikoides using phylogenetic analysis. From this study, we chew that the length of ITS region contributes to discriminate Korean harmful algal species and ITS analysis is a useful method for resolving the systematic relationships of dinoflagellates.

  • PDF

Molecular Analysis of Complete SSU to LSU rDNA Sequence in the Harmful Dinoflagellate Alexandrium tamarense (Korean Isolate, HY970328M)

  • Ki, Jang-Seu;Han, Myung-Soo
    • Ocean Science Journal
    • /
    • v.40 no.3
    • /
    • pp.155-166
    • /
    • 2005
  • New PCR primers (N=18) were designed for the isolation of complete SSU to LSU rDNA sequences from the dinoflagellate Alexandrium tamarense. Standard PCR, employing each primer set selected for amplifications of less than 1.5 kb, successfully amplified the expected rDNA regions of A. tamarense (Korean isolate, HY970328M). Complete SSU, LSU rDNAs and ITS sequences, including 5.8S rDNA, were recorded at 1,800 bp, 520 bp and 3,393 bp, respectively. The LSU rDNA sequence was the first report in Alexandrium genus. No intron was found in the LSU rRNA coding region. Twelve D-domains within the LSU rDNA were put together into 1,879 bp (44.4% G+C), and cores into 1514 bp (42.8% G+C). The core sequence was significantly different (0.0867 of genetic distance, 91% sequence similarity) in comparison with Prorocentrum micans (GenBank access. no. X16108). The D2 region was the longest in length (300 bp) and highly variable among the 12 D-domains. In a phylogenetic analysis using complete LSU rDNA sequences of a variety of phytoplankton, A. tamarense was clearly separated with high resolution against other species. The result suggests that the sequence may resolve the taxonomic ambiguities of Alexandrium genus, particularly of the tamarensis complex.