• Title/Summary/Keyword: IT Field

Search Result 30,841, Processing Time 0.054 seconds

High field HTS insert coils : Status and key technical issue

  • Schwartz, Justin
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.22-22
    • /
    • 2000
  • The discoveries of high temperature superconductors received great attention due to their high critical temperatures. These materials also exhibit extremely high critical magnetic fields and high critical current density at low temperature, high magnetic field. Thus, they are the most promising materials for superconducting magnets above 20 T. In this talk, progress in the development of HTS materials and insert coils at the National High Magnetic Field Laboratory will be reviewed. In 1999, a Bi-2212 stack of double pancakes generated 3 T in a 19 T background field. These results will be reviewed in terms of implications for future systems. Individual double pancakes of Bi-2223 have also been tested and their performance will also be discused. The present goal of a 57 system will be presented and the key technical requirements for larger, higher field systems will be addressed. It will be shown that in addition to increased critical current density, improved mechanical performance (stain resistanced) is necessary for high field systems. Furthemore, improvements in the conductor n-value will improve prospects for operational systems.

  • PDF

Effect of a Magnetic Field on Electrical Conductivity of a Partially Ionized Plasma

  • Yun, Hong-Sik
    • Journal of The Korean Astronomical Society
    • /
    • v.8 no.1
    • /
    • pp.29-34
    • /
    • 1975
  • Solar electrical conductivity has been calculated, making use of Yun and Wyller's formulation. The computed results arc presented in a tabulated form as functions of temperature and pressure for given magnetic field strengths. The results of the calculation show that the magnetic field does not play any important role in characterizing the electrical conductivity of the ionized gas when the gas pressure is relatively high (e.g., $P{\geq}10^4\;dynes/cm^2$). However, when the gas pressure is low (e.g., $P{\leq}10\;dynes/cm^2$), the magnetic field becomes very effective even if its field strength is quite small (e.g., $B{\leq}0.01$ gauss). It is also found that, except for lower temperature region (e.g., $T{\leq}10^{4^{\circ}}K$), there is a certain linear relationship in a log- log graph between the pressure and the critical magnetic field strength, which is defined as a field strength capable of reducing the non-magnetic component of the electrical conductivity by 20%.

  • PDF

Study on Electrohydrodynamic Analysis of Cylinder Type ESP (원통형 전기집진기의 전기유체역학적 해석에 관한 연구)

  • 조용수;여석준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.3
    • /
    • pp.243-254
    • /
    • 1996
  • The main purpose of this study is to investigate the collection efficiency characteristics of a cylindrical ESP. To do that, it is necessary to analyze the electric field, gas flow field, and mechanism of particle movement by numerical simulation based on EHD model. For a gas flow field, Navier-Stokes equation involving the electric source term was solved by SIMPLE algorithm. In case of the electric field, the current continuity and electric field equations were solved by S.O.R. method. The analysis of particle movement was performed on the basis of PSI-CELL model from the Lagrangian viewpoint. The results showed that the influence on the gas flow field by the electric field is almost negligible in a cylindrical ESP. The particle drift velocity $V_P$ toward the collection surface is increased continuously by the electrostatic force due to the rise of particle charge as the particle is moving to the flow direction and the particle size becomes larger. The collection efficiency is to quitely higher with the increase of applied voltage for the same particle size, while becomes smaller as the inlet velocity is increased.

  • PDF

The influence that cup-type shield inner vacuum interrupter causes to electric field distribution (Vacuum Interrupter 내부 End_shield가 전계분포에 미치는 영향)

  • Yoon, Jae-Hun;Kim, Byung-Chul;Her, June;Lim, Kee-Jo;Kim, Seong-Hwa
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.478-479
    • /
    • 2008
  • this paper describes the electric field distribution interpretation along a shield form inner vacuum interrupter(VI). The equipotential line and electric field and field vector in a VI are analysed by a finite element method at various shield form. in result, The equipotential line and electric field distribution was affected to VI shield form. The reason is as it gets distortion of equipotential line done. shield of cup type is how to electric field distribution, finally, this paper recognized whether or not affected, and proposed gap with the most suitable shield length and an external insulation.

  • PDF

The Simulation of Electric Field Distribution for Globular Dielectric in the Atmosphere (대기중에서 구(球)형 유전체의 전계 분포 시뮬레이션)

  • 이동훈;박재윤;박홍재;고희석
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.7
    • /
    • pp.305-309
    • /
    • 2003
  • This paper was shown the simulation of electric field distribution of globular dielectric for design of ideal packed-bed plasma reactor. When discharge gap between the electrodes and input voltage are each 20[mm]. 10000[V] in the atmosphere, the results of simulation to the electric field was measured stronger at globular dielectric of $\phi$5[mm] than 1$\phi$[mm] and 3.33$\phi$[mm]. And the maximum electric field or globular dielectric with $\phi$10[mm] was increased about 5[%] to maximum electric field of globular dielectric with $\phi$5[mm] in the atmosphere. when dielectric constant of globular dielectric is 100, it was simulated about 90[%] of maximum electric field of globular dielectric over 1000 dielectric constant. Ana the highest electric field appeared as globular electric was parallel structure with the other globular dielectric side by side of the globular dielectric and connected to electrodes.

A Study on Magnetic Field Distribution Characteristics for Remote Field Area (리모트 필드 영역에서의 자계 분포특성에 관한 연구)

  • Kim, S.K.;Lee, E.U.;Lim, S.S.;Kim, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.312-314
    • /
    • 2000
  • The electric wave propagation characteristics of electromagnetic field by induction current shows a nonlinear distinction in the metal but linear on air. This paper is written about the magnetic transmission distinction in the metalic tube, which wrapped the center axis by the same direction. The electromagnetic field made by the transmission signal is transferred from the transmission coil area toward the receiving coil by the magnetic diffusion. So, it is different magnetic flux around the coil with one in the remote field area. Analyzing such a complex magnetic characteristic, we verified this theory by the vector analysis and presented eddy current mechanism and analytical model about magnetic distribution in the remote field area. This magnetic distribution rate in metal body will be very useful in the nondestructive inspection of the eddy current in remote field which is recently rising as a new technology.

  • PDF

Development of Field Current ripple Compensating Method by d-axis Flux-linkage in WRSM (권선계자형 동기전동기의 d축 쇄교자속에 의한 계자전류리플 보상 기법 개발)

  • Hwang, Dae-Yeon;Gu, Bon-Gwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.9
    • /
    • pp.1165-1173
    • /
    • 2018
  • Recently, owing to environmental problems and instability of rare earth resources market, non-rare earth electric motors are attracting attention. As a non-rare earth motor type, a wound rotor synchronous motor(WRSM) has high power density and wide driving range further it can reduce loss by field current control during field weakening control at high speed. However, since the d-axis flux of the WRSM is coupled with the rotor circuit, the fluctuation in the d-axis flux linkage affects the rotor circuit, which causes ripple of the field current and torque. In this paper, we propose the field current ripple compensation method by injecting the feedforward voltage. the proposed compensating method was demonstrated by simulation and experiments.

The effect of magnetic field and inclined load on a poro-thermoelastic medium using the three-phase-lag model

  • Samia M. Said
    • Geomechanics and Engineering
    • /
    • v.37 no.3
    • /
    • pp.243-251
    • /
    • 2024
  • In the current work, a poro-thermoelastic half-space issue with temperature-dependent characteristics and an inclined load is examined in the framework of the three-phase-lag model (3PHL) while taking into account the effects of magnetic and gravity fields. The resulting coupled governing equations are non-dimensional and are solved by normal mode analysis. To investigate the impacts of the gravitational field, magnetic field, inclined load, and an empirical material constant, numerical findings are graphically displayed. MATLAB software is used for numerical calculations. Graphs are used to visualize and analyze the computational findings. It is found that the physical quantities are affected by the magnetic field, gravity field, the nonlocal parameter, the inclined load, and the empirical material constant.

Comparison of Soil Chemical Properties in Greenhouse or Open Field Where Flower Crops were Cultivated from 2018 to 2020 (화훼작물이 재배된 온실 또는 노지재배지의 토양 화학성 비교)

  • Kwon, Hye Sook;Heo, Seong
    • Korean Journal of Plant Resources
    • /
    • v.35 no.5
    • /
    • pp.675-685
    • /
    • 2022
  • A comparative analysis was performed on the soil chemical properties of greenhouse or open field where flower crops were grown from 2018 to 2020. The pH of greenhouse soils was kept slightly higher than the optimum range suggested by Rural Development Administration and that of open field soils was maintained within the optimum range for three years. The contents of organic matter (OM) were within the optimum range without significant change every year in both soils. Available phosphate (Av. P2O5) of greenhouse soils was the highest at 560 mg/kg in 2018, but it decreased every year and fell within the appropriate range in 2020. The concentration of Av. P2O5 in open field soils have fluctuated for three years, not showing a significant difference. Electrical conductivity (EC) of greenhouse soils was higher every year than the standard, 2.0 dS/m, but EC of open field soils remained below the standard. The contents of exchangeable cations were higher than the standard, showing significant differences among the years in greenhouse soils. In open field soils, other cations except exchangeable K+ were maintained higher than the optimal level and only Ca2+ showed a significant difference among the years. In Pearson correlation matrices, the value of exchangeable Ca2+ had a significantly positive correlation with exchangeable Mg2+ content at both greenhouse and open field soils. Based on principal component analysis, the soils of greenhouse were distributed within the range of high concentrations of Av. P2O5, EC and exchangeable cations, while the soils of open field were characterized by low contents of OM and exchangeable cations. Therefore, it is essential to lower the concentration of exchangeable cations in greenhouse soils. It is common for the soils of open field to have a low OM content, so that organic fertilizers should be more actively applied to the soils in open field.

Evaluation of Field working Improvement for an Indoor Fire-fighting Robot (실내화재진압로봇의 현장운용성 향상을 위한 실용성 평가)

  • Kwark, Ji-Hyun;Lee, Woo-Jun;Kim, Jong-Kwon
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.126-131
    • /
    • 2008
  • Fire-fighters have been struggling against heat and dense smoke caused by fire when it occurs especially at the basement or the inner place of a building. An indoor fire-fighting robot with well heat-resistance, great searching cameras and good extinguishing ability has been recently developed. It never suffocate, coming into the fire district and extinguishes fire directly. In this study, several experiment was conducted to promote field working ability of the fire-fighting robot. As a result, heat resistance, water discharge and field working appeared satisfactory.

  • PDF