• Title/Summary/Keyword: IT Coding Education

Search Result 234, Processing Time 0.02 seconds

Method of ChatBot Implementation Using Bot Framework (봇 프레임워크를 활용한 챗봇 구현 방안)

  • Kim, Ki-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.1
    • /
    • pp.56-61
    • /
    • 2022
  • In this paper, we classify and present AI algorithms and natural language processing methods used in chatbots. A framework that can be used to implement a chatbot is also described. A chatbot is a system with a structure that interprets the input string by constructing the user interface in a conversational manner and selects an appropriate answer to the input string from the learned data and outputs it. However, training is required to generate an appropriate set of answers to a question and hardware with considerable computational power is required. Therefore, there is a limit to the practice of not only developing companies but also students learning AI development. Currently, chatbots are replacing the existing traditional tasks, and a practice course to understand and implement the system is required. RNN and Char-CNN are used to increase the accuracy of answering questions by learning unstructured data by applying technologies such as deep learning beyond the level of responding only to standardized data. In order to implement a chatbot, it is necessary to understand such a theory. In addition, the students presented examples of implementation of the entire system by utilizing the methods that can be used for coding education and the platform where existing developers and students can implement chatbots.

Exploring Pre-Service Earth Science Teachers' Understandings of Computational Thinking (지구과학 예비교사들의 컴퓨팅 사고에 대한 인식 탐색)

  • Young Shin Park;Ki Rak Park
    • Journal of the Korean earth science society
    • /
    • v.45 no.3
    • /
    • pp.260-276
    • /
    • 2024
  • The purpose of this study is to explore whether pre-service teachers majoring in earth science improve their perception of computational thinking through STEAM classes focused on engineering-based wave power plants. The STEAM class involved designing the most efficient wave power plant model. The survey on computational thinking practices, developed from previous research, was administered to 15 Earth science pre-service teachers to gauge their understanding of computational thinking. Each group developed an efficient wave power plant model based on the scientific principal of turbine operation using waves. The activities included problem recognition (problem solving), coding (coding and programming), creating a wave power plant model using a 3D printer (design and create model), and evaluating the output to correct errors (debugging). The pre-service teachers showed a high level of recognition of computational thinking practices, particularly in "logical thinking," with the top five practices out of 14 averaging five points each. However, participants lacked a clear understanding of certain computational thinking practices such as abstraction, problem decomposition, and using bid data, with their comprehension of these decreasing after the STEAM lesson. Although there was a significant reduction in the misconception that computational thinking is "playing online games" (from 4.06 to 0.86), some participants still equated it with "thinking like a computer" and "using a computer to do calculations". The study found slight improvements in "problem solving" (3.73 to 4.33), "pattern recognition" (3.53 to 3.66), and "best tool selection" (4.26 to 4.66). To enhance computational thinking skills, a practice-oriented curriculum should be offered. Additional STEAM classes on diverse topics could lead to a significant improvement in computational thinking practices. Therefore, establishing an educational curriculum for multisituational learning is essential.

In-service teacher's perception on the mathematical modeling tasks and competency for designing the mathematical modeling tasks: Focused on reality (현직 수학 교사들의 수학적 모델링 과제에 대한 인식과 과제 개발 역량: 현실성을 중심으로)

  • Hwang, Seonyoung;Han, Sunyoung
    • The Mathematical Education
    • /
    • v.62 no.3
    • /
    • pp.381-400
    • /
    • 2023
  • As the era of solving various and complex problems in the real world using artificial intelligence and big data appears, problem-solving competencies that can solve realistic problems through a mathematical approach are required. In fact, the 2015 revised mathematics curriculum and the 2022 revised mathematics curriculum emphasize mathematical modeling as an activity and competency to solve real-world problems. However, the real-world problems presented in domestic and international textbooks have a high proportion of artificial problems that rarely occur in real-world. Accordingly, domestic and international countries are paying attention to the reality of mathematical modeling tasks and suggesting the need for authentic tasks that reflect students' daily lives. However, not only did previous studies focus on theoretical proposals for reality, but studies analyzing teachers' perceptions of reality and their competency to reflect reality in the task are insufficient. Accordingly, this study aims to analyze in-service mathematics teachers' perception of reality among the characteristics of tasks for mathematical modeling and the in-service mathematics teachers' competency for designing the mathematical modeling tasks. First of all, five criteria for satisfying the reality were established by analyzing literatures. Afterward, teacher training was conducted under the theme of mathematical modeling. Pre- and post-surveys for 41 in-service mathematics teachers who participated in the teacher training was conducted to confirm changes in perception of reality. The pre- and post- surveys provided a task that did not reflect reality, and in-service mathematics teachers determined whether the task given in surveys reflected reality and selected one reason for the judgment among five criteria for reality. Afterwards, frequency analysis was conducted by coding the results of the survey answered by in-service mathematics teachers in the pre- and post- survey, and frequencies were compared to confirm in-service mathematics teachers' perception changes on reality. In addition, the mathematical modeling tasks designed by in-service teachers were evaluated with the criteria for reality to confirm the teachers' competency for designing mathematical modeling tasks reflecting the reality. As a result, it was shown that in-service mathematics teachers changed from insufficient perception that only considers fragmentary criterion for reality to perceptions that consider all the five criteria of reality. In particular, as a result of analyzing the basis for judgment among in-service mathematics teachers whose judgment on reality was reversed in the pre- and post-survey, changes in the perception of in-service mathematics teachers was confirmed, who did not consider certain criteria as a criterion for reality in the pre-survey, but considered them as a criterion for reality in the post-survey. In addition, as a result of evaluating the tasks designed by in-service mathematics teachers for mathematical modeling, in-service mathematics teachers showed the competency to reflect reality in their tasks. However, among the five criteria for reality, the criterion for "situations that can occur in students' daily lives," "need to solve the task," and "require conclusions in a real-world situation" were relatively less reflected. In addition, it was found that the proportion of teachers with low task development competencies was higher in the teacher group who could not make the right judgment than in the teacher group who could make the right judgment on the reality of the task. Based on the results of these studies, this study provides implications for teacher education to enable mathematics teachers to apply mathematical modeling lesson in their classes.

Determinants of Insurance Products Cross-selling Performance : Focusing on Career Experience (직업경험을 중심으로 한 보험상품 교차판매 성과의 결정요인 분석)

  • Son, WooCheol;Kang, ShinAe
    • Journal of Service Research and Studies
    • /
    • v.9 no.3
    • /
    • pp.39-60
    • /
    • 2019
  • The purpose of this study is to analyze the determinants of insurance product cross selling performance. For the study, 11 insurance managers and 2 sales managers belonging to A insurance agency were selected and in-depth interviews were conducted. The analysis of the research data was done by the open coding method suggested by Strauss & Corbin(2001). As a result, 84 concepts, 28 subcategories and 10 categories were derived. The ten categories that were determinants of insurance product cross-selling performance were personal characteristics, consultation method, cross-selling ratio, sales culture, education, customer change, customer DB provision, satisfaction, business support system, and customer service. In order to verify the qualitative results, quantitative analysis was emplyed to the actual performance data of insurance planners belonging to A insurance agency during April 2016~March 2019. As a result of the analysis, the age, position, and the number of months worked in the insurance company had a statistically significant effect on the number of life insurance contracts in total insurance contracts and life insurance contracts in total insurance contracts. In addition, the age, position, and the number of months worked in the insurance company had a statistically significant negative impact on the number of non-life insurance contracts in the total number of insurance contracts and the total amount of insurance contracts in total insurance contracts. The result of this study can be an important basic data for the development of educational programs and job support systems for the training of insurance planners. Insurance companies should refer to ten categories derived from qualitative research in order to increase the performance of insurance planners and to promote long-term service. Especially, it is necessary to develop specialized education programs and job support systems so that cross sales that increase the proportion of life insurance sales increase.