• Title/Summary/Keyword: ISO 5349-1

Search Result 11, Processing Time 0.027 seconds

Measurement and Assessment of Hand-arm Vibration due to Grinders (그라인딩 작업에 의한 수완계 진동 계측 및 평가)

  • 이종문;박진화
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.1032-1037
    • /
    • 2003
  • This work measured the hand-transmitted vibration due to shipyard worker's grinding and assessed the vibration exposure for predicted 10% prevalence of vibration-induced white finger in a group of exposed persons according to test procedure of ISO 5349-1. And also the transmissibility performance of resilient material, mainly applied to anti-vibration gloves in present market was measured on the basis of ISO 13753 and confirmed that the material would Probably not provide greater attenuation below 30㎐, the dominant frequency range of hand-transmitted vibration due to grinder.

  • PDF

A Study on Measurement and Assessment of Local Vibration by Walking-type Cultivator (보행형 관리기의 국소진동 측정과 평가에 관한 연구)

  • Noh, Kyoung-Kyu;Park, Peom
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.1
    • /
    • pp.67-73
    • /
    • 2009
  • The goal of this study was to assess the level of vibration in an walking-type cultivator, and to provide a basic information to manage the vibration exposure for farmers. The latent periods of vibration-induced white finger (VWF) were assessed through analyzing the vibration levels and frequency characteristics. Also, vibration acceleration levels based on the daily vibration exposure duration was suggested. The latent periods of vibration-induced white finger were assessed by ISO 5349 method. The latent periods were 4.5 and 10.1 years at 10% and 50% of farmer group, respectively. Also, under ACGIH (American Conference of Governmental Industrial Hygienists) standard, daily vibration exposure duration at 6.7 m/s2 of vibration acceleration has to be less than 4 hours. Therefore, education that maximum working hours should be less than 4 continuous hours is necessary for the operators of walking-type cultivators.

A Study on Measurement and Analysis of Local Vibration Induced by the Powered Hand Tools Used in Automobile Assembly Lines (자동차 조립공정에서 동력수공구에 의하여 발생되는 국소진동의 측정과 분석에 관한 연구)

  • Park, Hee-Sok;Huh, Seung-Moo
    • IE interfaces
    • /
    • v.17 no.3
    • /
    • pp.375-383
    • /
    • 2004
  • The purpose of this study is to investigate the characteristics of vibration induced by the powered hand tools used in the automobile assembly lines, and estimate the prevalence of vibration syndrome. The acceleration levels of four major powered hand tools were measured using the ISO 5349 method along with the time of exposure to the vibration of the hand tools. Four-hour-energy-equivalent frequency-weighted accelerations ranged from $1.27m/s^2$ to $2.58m/s^2$, After exposure to vibration for 12.6 years, about 10% of the workers using impact ranches were expected to develop Raynaud's disease. For the workers using grinders, 16.6% of the workers were expected to develop Raynaud's disease. The results would be of help in developing the guidelines of local vibration control.

A Study on the Compatibility Evaluation of Hand-arm Adequate Vibration and an Oscillating Spectrum for Vibrating Tools (국소진동 보호구의 적합성 평가와 진동공구에 적합한 가진 스펙트럼에 관한 연구)

  • Yun, Hee-Kyung;Kim, Tae-Gu;Yun, Yu-Seong
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.1
    • /
    • pp.60-68
    • /
    • 2009
  • The aim of this paper is to evaluate the compatibility of anti-vibration gloves, to predict the attenuation of vibration with different types of anti-vibration gloves, to estimate the spectra of the ISO 10819 standard, and to present an oscillating spectrum adequate for vibrating tools. This paper use two ISO standards for the measurement and evaluation of hand-arm vibration. Some anti-vibration gloves can attenuate vibration, but all the anti-vibration gloves in this study do not satisfy the ISO 10819 requirements. In case of equal vibration types, the outside materials are effective in order of leather, fabrics and rubber-coating. Anti-vibration gloves manufactured in the United State satisfy ISO 10819 criteria using United State subjects, but do not satisfy ISO 10819 using Japanese subjects. M-spectrum acceleration exists below 10Hz and H-spectrum exists above 500Hz. Generally vibrating tools have the peak of Z-axis, but generation of vibration differ from each vibrating tools.

Research on the actual vibration exposure of workers engaging in vibration induced works (진동작업 종사 근로자의 진동노출 실태에 관한 연구)

  • Kim, Kab-Bae;Chung, Eun-Kyo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.178-185
    • /
    • 2012
  • In Korea, researches on the exposure assessment of the hand-transmitted vibration started from the mid-90, however, they were performed in the limited industries such as auto-assembly plants and the evaluation of the vibration was mostly conducted by ISO 5349(1986). Therefore, it was necessary to assess hand-transmitted vibration levels of workplace such as ship building/repairing industry or mining industry where occupational injuries are largely occurred and to evaluate the vibration levels using revised ISO 5349(2001). The SVAN 949 Four Channels Sound & Vibration Analyser was used for the measurement. The workers using a chain saw were exposed to $1.7{\sim}2.8m/s^2$ of daily vibration level. Workers using a rock drill in a coal mining were exposed to the highest vibration acceleration among workers and the levels were $7.1{\sim}10.8m/s^2$. Vibration levels of grinders were different according to the types of grinders. The hand-transmitted vibration of 3 types of grinders were measured and the levels were $3.3{\sim}11.1m/s^2$. Workers using a impact wrench were exposed to $1.5{\sim}1.6m/s^2$ of vibration. Out of 20 kinds of machines, only 4 tools provided the information of vibration acceleration on the instructions. In addition, the current condition of workplaces to control vibration was not much different from the past because there are no vibration exposure limit.

  • PDF

Assessment on the Actual Vibration Exposure of Workers Engaging in Vibration Induced Works (일부 진동작업 종사 근로자의 진동노출 수준 평가)

  • Kim, Kab-Bae;Chung, Eun-Kyo;You, Ki-Ho;Jang, Jae-Kil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.10
    • /
    • pp.940-948
    • /
    • 2012
  • In Korea, researches on the exposure assessment of the hand-transmitted vibration started from the mid-90, however, they were performed in the limited industries such as auto-assembly plants and the evaluation of the vibration was mostly conducted by ISO 5349(1986). Therefore, it was necessary to assess hand-transmitted vibration levels of workplace such as ship building/repairing industry or mining industry where occupational injuries are largely occurred and to evaluate the vibration levels using revised ISO 5349(2001). The SVAN 948 Four Channels Sound & Vibration Analyser was used for the measurement. The workers using a chain saw were exposed to 1.7~2.8 $m/s^2$ of daily vibration level. Workers using a rock drill in a coal mining were exposed to the highest vibration acceleration among workers and the levels were 7.1~10.8 $m/s^2$. Vibration levels of grinders were different according to the types of grinders. The hand-transmitted vibration of 3 types of grinders were measured and the levels were 3.3~11.1 $m/s^2$. Workers using a impact wrench were exposed to 1.5~1.6 $m/s^2$ of vibration. Out of 20 kinds of machines, only 4 tools provided the information of vibration acceleration on the instructions. In addition, the current condition of workplace to control vibration was not much different from the past because there are no vibration exposure limit.

A Study on Rotary Weeding Blade Installation Angle for Reduction of Hand Vibration in Working Type Cultivator

  • Kwon, Tae Hyeong;Kim, Joonyong;Lee, Chungu;Kang, Tae Gyoung;Lee, Byeong-Mo;Rhee, Joong-Yong
    • Journal of Biosystems Engineering
    • /
    • v.39 no.1
    • /
    • pp.11-20
    • /
    • 2014
  • Purpose: Walking type cultivator used for weeding generated excessive handle vibration as well as bouncing motion depending on the weeding speed. This research was conducted to define a design factor of the rotary weeding blades for reducing soil reaction forces as well as hand vibration. Methods: The motion and forces acting on the rotary blades were reviewed to find out the most influencing parameter on hand vibration. The installation angle (IA) of the blade was selected and analyzed to determine the condition of no reaction force less. For removing the unnecessary upward soil reaction, the design factor theory of weeding blade was suggested based on geometrics and dynamics. For evaluation of design factor theory, the experiment in situ was performed base on ISO 5349:1. The vibration $a_{hv}$ and theoretical value $X_{MF}$ were compared with two groups that one was positive group ($X_{MF}$ > 0) and the other was negative group ($X_{MF}$ < 0). Results: $X_{MF}$ was derived from rotational velocity, forward velocity, disk diameter, weeding depth, blade's width and IA of blade. Two groups had significant difference (p < 0.05). In aspect of the group mean total exposure duration, positive group was 17.53% bigger than negative group. When disk radius 100, 150 and 200 mm, minimum IAs were $4{\sim}27^{\circ}$, $3{\sim}15^{\circ}$ and $2{\sim}10^{\circ}$, respectively. A spread sheet program which calculated XMF was developed by Excel 2013. Conclusions: According to this result, minimum IA of weeding blade for soil reaction reduction could be obtained. For reduction hand-arm vibration and power consumption, minimum IA is needed.

Assessment of Vibration Produced by Pneumatic Hand Tools Used in Automobile Assembly (자동차 조립공정에서 공기압력식 진동공구의 국소진동평가)

  • Kim, Sun Sul;Paik, Nam Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.1
    • /
    • pp.1-16
    • /
    • 1996
  • This study was conducted at an automobile assembly line located in Kyonggi-do, Korea from January 16 to February 28, 1995. The purposes of this study were to assess worker exposures to hand-arm vibration and the performance of gloves for reduction of vibration. The exposure to vibration was measured using to the ISO 5349(1986) method. Vibration acceleration and frequency spectra for each tool were determined on-line replicating actual working conditions and analyzed together with exposure time for evaluating individual worker exposure. Eight pneumatic hand tools, 60 workers exposured to hand-arm vibration, and three pairs of gloves were involved in this study. Results are summarized as follows. 1. Dominant frequencies of vibration for all tools(n=8) measured in this study ranged from 250 Hz to 800 Hz. 2. There was no significant correleration between dominant frequencies and free running speed (p>0.05). 3. Total predicted exposure times of using impact, hammer type did not exceed 40 minutes, but metal finish task, using grinder and sander exceeded 40 minutes. Total exposure time affected significantly the frequency-weighted, 4 hr equivalent acceleration. 4. Predicted prevalence and observed exposure period data were compared in workers(n=60), according to ISO 5349. In this results, 23(50.0 %) and 24(48.07 %) persons exceeded the mean latency periods for vibration-induced white finger(VWF) at 10 % (n=46) and 50 % (n=52) standards, respectively. On the basis of ISO equation, mean latent periods for VWF were 3.23, 4.72 years at 10 %, 50 % standards, respectively. 5. Reduction of vibration by gloves was evaluated. Since impact pneumatic tools produced low frequency vibrations, conventional gloves did not provide any protection. Gloves A and C amplify somewhat the signal at frequency below 400 Hz; the attenuation increases progressively by frequency to reach 18 dB ($7.94{\times}10^{-6}m/s^2$) at 1,000 Hz, slightly worsening Glove B did not provide any protection and made the situation slightly worse. However, since they make the hands warm, the occurrence of vibration-induced white fingers may be reduced.

  • PDF

Measurement of the hand-transmitted vibration using a miniature 3-axes accelerometer (초소형 3축 가속도계를 이용한 수전달 진동 측정에 관한 연구)

  • 송치문;장한기;김승한;채장범
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.1043-1047
    • /
    • 2003
  • Most of the measurement and the evaluation of hand-transmitted vibration have been performed by using a small size single axis accelerometer between the handle and the hand palm or a three axis accelerometer attached on an adapter outside the hand(indirect measurement). It is most desirable for the correct evaluation of hand-transmitted vibration form the power tool handle to measure the acceleration between the handle surface and the hand palm in the three axis(direct measurement) as recommended in ISO 5349-1. In the study three axes acceleration measurement device was developed of which the thickness was less than 7mm so that it can be placed between the handle and the palm without any inconvenience during the measurement. To verify the performance of the developed device, measured acceleration by the two methods, direct and indirect, were compared in the study.

  • PDF

Estimation of Anti-vibration Glove Performance Considering the Vibration Characteristic of Power Tool through Development of Flexible Palm Adapter (Flexible Palm 어댑터의 개발을 통한 동력 공구의 진동 특성을 고려한 방진장갑의 성능 평가)

  • Song, Chi-Mun;Jang, Han-Kee;Hong, Seok-In;Chai, Jang-Bom
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.2
    • /
    • pp.217-224
    • /
    • 2009
  • This study aims to show the guideline to select optimal anti-vibration gloves for specific power tools to prevent hazardous vibration to human body. It is most desirable for the correct evaluation of handtransmitted vibration form the power tool handle to measure the acceleration between the handle surface and the hand palm as recommended in ISO 5349-1. First, the accurate acceleration measurement device was developed of which the thickness and weight were less than 6 mm and 12 g respectively so that it can be placed between the handle and the palm without any inconvenience during the measurement. Finally, using the device we estimated anti-vibration glove performances considering the frequency characteristics of generated vibration by the power tool.