• Title/Summary/Keyword: ISM: individual objects

Search Result 6, Processing Time 0.019 seconds

MOLECULAR OUTFLOWS AND THE FORMATION PROCESS OF VERY LOW-MASS OBJECTS

  • PHAN-BAO, NGOC;DANG-DUC, CUONG;LEE, CHIN-FEI;HO, PAUL T.P.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.83-86
    • /
    • 2015
  • We present observational results characterizing molecular outflows from very low-mass objects in ${\rho}$ Ophiuchi and Taurus. Our results provide us with important implications that clarify the formation process of very low-mass objects.

A STUDY OF MOLECULAR CLOUD ASSOCIATED WITH THE H II REGION Sh 156

  • KANG MEEJOO;LEE YOUNGUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.33-41
    • /
    • 2005
  • We have conducted observations toward the molecular cloud associated with the H II region Sh 156 in $^{13}CO$(J = 1-0), $C^{18}O$(J = 1-0), and CS(J = 2 -1) using the TRAO 14 m telescope. Combining with existing $^{12}CO$(J = 1- 0) data of the Outer Galaxy Survey, we delineated the physical properties of the cloud. We found that there is a significant sign of interaction between the H II region and the molecular gas. We estimated the masses of the molecular cloud, using three different techniques; the most plausible mass is estimated to be $1.37 {\times} 10^5 M_{\bigodot}$, using a conversion factor of $X = 1.9 {\times} 10^{20}\;cm^{-2} (K\;km\;s^{-1})^{-1}$, and this is similar to virial mass estimate. This implies that the cloud is gravitationally bound and in virial equilibrium even though it is closely associated with the H II region. In addition to existing outflow, we found several MSX and IRAS point sources associated with dense core regions. Thus, more star forming activities other than the existing H II region are also going on in this region.

SH 2-128, AN H II AND STAR FORMING REGION IN AN UNLIKELY PLACE

  • BOHIGAS JOAQUIN;TAPIA MAURICIO
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.285-288
    • /
    • 2004
  • Near-infrared imaging photometry supplemented by optical spectroscopy and narrow-band imaging of the H II region Sh 2-128 and its environment are presented. This region contains a developed H II region and the neighboring compact H II region S 128N associated with a pair of water maser sources. Midway between these, the core of a CO cloud is located. The principal ionizing source of Sh 2-128 is an 07 star close to its center. A new spectroscopic distance of 9.4 kpc is derived, very similar to the kinematic distance to the nebula. This implies a galactocentric distance of 13.5 kpc and z = 550 pc. The region is optically thin with abundances close to those predicted by galactocentric gradients. The $JHK_s$ images show that S 128N contains several infrared point sources and nebular emission knots with large near-infrared excesses. One of the three red Ks knots coincides with the compact H II region. A few of the infrared-excess objects are close to known mid- and far-infrared emission peaks. Star counts in J and $K_s$ show the presence of a small cluster of B-type stars, mainly associated with S 128N. The $JHK_s$ photometric properties together with the characteristics of the other objects in the vicinity suggest that Sh 2-128 and S 128N constitute a single complex formed from the same molecular cloud, with ages ${\~}10^6$ and < $3 {\times} 10^5$ years respectively. No molecular hydrogen emission was detected at 2.12 ${\mu}m$. The origin of this remote star forming region is an open problem.

HIGH ANGULAR RESOLUTION [Fe II] λ1.644 μ SPECTROSCOPY OF YSOS WITH SUBARU TELESCOPE

  • PYO TAE-SOO;HAYASHI MASAHIKO;NAOTO KOBAYASHI;TERADA HIROSHI;TOKUNAGA ALAN T.
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.249-252
    • /
    • 2005
  • We present results of the velocity-resolved spectroscopy of the [Fe II] $\lambda$1.644${\mu}m$ emission toward outflow sources with the Subaru Telescope at the angular resolution of 0.apos;16 ${\~}$ 0.apos;5 arcseconds. The observed sources are L1551 IRS 5, DG Tau, HL Tau and RW Aur, which are located in the Taurus-Aurigae Molecular Cloud, one of the closest star forming regions (0.apos;1 = 14 AU). We were able to resolve outflow structure in the vicinity of the sources at a scale of a few tens of AU. The position-velocity diagram of each object shows two velocity components: the high velocity component (HVC: 200 - 400 km $s^{-l}$) and the low velocity component (LVC: 50 - 150 km $s^{-l}$), which are clearly distinct in space and velocity. The HVC may be a highly collimated jet presumed from its narrow velocity width and high velocity. The LVC, on the other hand, may be a widely opened disk wind inferred from its broad velocity width and low velocity. The spectrum taken perpendicular to the L1551 IRS 5 outflow at its base shows that the LVC has a spatially wide subcomponent, supporting the above interpretation. We demonstrated that the [Fe II] 1.644 $\mu$ spectroscopy is a very powerful tool for the studies of fast jets and winds that directly emanate from star-disk systems.

G192.8-1.1: A CANDIDATE OF AN EVOLVED THERMAL COMPOSITE SUPERNOVA REMNANT REIGNITED BY NEARBY MASSIVE STARS

  • Kang, Ji-Hyun;Koo, Bon-Chul;Byun, Do-Young
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.6
    • /
    • pp.259-277
    • /
    • 2014
  • G192.8-1.1 has been known as one of the faintest supernova remnants (SNRs) in the Galax until the radio continuum of G192.8-1.1 is proved to be thermal by Gao et al. (2011). Yet, the nature of G192.8-1.1 has not been fully investigated. Here, we report the possible discovery of faint non-thermal radio continuum components with a spectral index ${\alpha}{\sim}0.56(S_{\nu}{\propto}{\nu}^{-{\alpha}})$ around G192.8-1.1, while of the radio continuum emission is thermal. Also, our Arecibo $H_I$ data reveal an $H_I$ shell, expanding with an expansion velocity of $20-60km\;s^{-1}$, that has an excellent morphological correlation with the radio continuum emission. The estimated physical parameters of the $H_I$ shell and the possible association of non-thermal radio continuum emission with it suggest G192.8-1.1 to be an~0.3 Myr-old SNR. However, the presence of thermal radio continuum implies the presence of early-type stars in the same region. One possibility is that a massive star is ionizing the interior of an old SNR. If it is the case, the electron distribution assumed by the centrally-peaked surface brightness of thermal emission implies that G192.8-1.1 is a "thermal-composite" SNR, rather than a typical shell-type SNR, where the central hot gas that used to be bright in X-rays has cooled down. Therefore, we propose that G192.8-1.1 is an old evolved thermal-composite SNR showing recurring emission in the radio continuum due to a nearby massive star. The infrared image supports that the $H_I$ shell of G192.8-1.1 is currently encountering a nearby star forming region that possibly contains an early type star(s).

INVESTIGATING THE PULSAR WIND NEBULA 3C 58 USING EMISSION MODELS

  • Kim, Seungjong;Park, Jaegeun;An, Hongjun
    • Journal of The Korean Astronomical Society
    • /
    • v.52 no.5
    • /
    • pp.173-180
    • /
    • 2019
  • We present IR flux density measurements, models of the broadband SED, and results of SED modeling for the Pulsar Wind Nebula (PWN) 3C 58. We find that the Herschel flux density seems to be slightly lower than suggested by interpolation of previous measurements in nearby wavebands, implying that there may be multiple electron populations in 3C 58. We model the SED using a simple stationary one-zone and a more realistic time-evolving multi-zone scenario. The latter includes variations of flow properties in the PWN (injected energy, magnetic field, and bulk speed), radiative energy losses, adiabatic expansion, and diffusion, similar to previous PWN models. From the modeling, we find that a PWN age of 2900-5400 yrs is preferred and that there may be excess emission at ${\sim}10^{11}Hz$. The latter may imply multiple populations of electrons in the PWN.