• Title/Summary/Keyword: ISM: abundance

Search Result 26, Processing Time 0.017 seconds

Observations of the CH3OH 42-51 E Line Toward the Sgr B2 Region

  • Minh, Young-Chol;Kim, Sang-Joon
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.1
    • /
    • pp.13-16
    • /
    • 2011
  • The $CH_3OH$ $4_2-5_1$ E transition was observed toward the Sgr B2 region, including the Principal Cloud and its surroundings. This methanol transition shows an extended emission along the 2'N cloud, which is believed to be colliding with the Principal Cloud and may trigger the massive star formation in this cloud. This extended methanol emission may also suggest that the 2'N cloud is under shocks. We derive total methanol column density $N(CH_3OH)\;=\;2.9{\pm}0.3{\times}10^{14}\;cm^{-2}$ toward the peak position of the extended emission. The fractional abundance of methanol is about 10.9, relative to the estimated total $H_2$ abundance, which is similar to the methanol abundances in quiet gas phase.

CHEMICAL DIAGNOSTICS OF THE MASSIVE STAR CLUSTER-FORMING CLOUD G33.92+0.11. III. 13CN AND DCN

  • Minh, Young Chol;Liu, Hauyu Baobab
    • Journal of The Korean Astronomical Society
    • /
    • v.52 no.3
    • /
    • pp.83-88
    • /
    • 2019
  • Using ALMA observations of the $^{13}CN$ and DCN lines in the massive star-forming region G33.92+0.11A, we investigate the CN/HCN abundance ratio, which serves as a tracer of photodissociation chemistry, over the whole observed region. Even considering the uncertainties in calculating the abundance ratio, we find high ratios (${\gg}1$) in large parts of the source, especially in the outer regions of star-forming clumps A1, A2, and A5. Regions with high CN/HCN ratios coincide with the inflows of accreted gas suggested by Liu et al. (2015). We conclude that we found strong evidence for interaction between the dense gas clumps and the accreted ambient gas which may have sequentially triggered the star formation in these clumps.

ATOMIC CARBON IN THE W 3 GIANT MOLECULAR CLOUD

  • SAKAI TAKESHI;OKA TOMOHARU;YAMAMOTO SATOSHI
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.257-260
    • /
    • 2005
  • We have mapped the W 3 giant molecular cloud in the $C^o\;^3P_1-^3 P_o$ ([CI]) line with the Mount Fuji Submillimeter-wave Telescope. The [CI] emission is extended over the molecular cloud, having peaks at three star forming clouds; W 3(Main), W 3(OH), and AFGL 333. The [CI] emission is found to be strong in the AFGL 333 cloud. We have also observed the $C^{18}O,\;CCS,\;N_2H^+$, and $H^{13}CO^+$ lines by using the Nobeyama Radio Observatory 45 m telescope. In the AFGL 333 cloud, we find two massive cores, which are highly gravitationally bound and have no sign of active star formation. The high [$C^o$]/[CO] and [CCS]/[$N_2H^+$] abundance ratios suggest that the AFGL 333 cloud is younger than the W 3(Main) and W 3(OH) clouds.

SiO IN THE SGR B2 REGION

  • Minh, Y.C.
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.3
    • /
    • pp.61-65
    • /
    • 2007
  • The 2-1 and 5-4 transitions of SiO have been observed toward the Sgr B2 region, including the Principal Cloud(the GMC containing Sgr B2(M)) and its surroundings. The morphology and velocity structure of the SiO emission show a close resemblance with the HNCO Ring feature, identified by Minh & Irvine(2006), of about 10 pc in diameter, which may be expanding and colliding with the Principal Cloud. Three SiO clumps have been found around the Ring, with total column densities $N_{SiO}{\sim}1{\times}10^{14}cm^{-2}$ at the peak positions of these clumps. The fractional SiO abundance relative to $H_2$ has been estimated to be ${\sim}(0.5-1){\times}10^{-9}$, which is about two orders of magnitude larger than the quiet dense cloud values. Our SiO observational result supports the existence of an expanding ring, which may be triggering active star formations in the Principal Cloud.

CHANDRA X-RAY OBSERVATIONS OF EARLY TYPE GALAXIES

  • KIM DONG-WOO
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.213-222
    • /
    • 2003
  • We review recent observational results on early type galaxies obtained with high spatial resolution Chandra data. With its unprecedented high spatial resolution, Chandra reveals many intriguing features in early type galaxies which were not identified with the previous X-ray missions. In particular, various fine structures of the hot ISM in early type galaxies are detected, for example, X-ray cavities which are spatially coincident with radio jets/lobes, indicating the interaction between the hot ISM and radio jets. Also point sources (mostly LMXBs) are individually resolved down to Lx = a few x $10^{37}\;erg\;sec^{-1}$ and it is for the first time possible to unequivocally investigate their properties and the X-ray luminosity function. After correcting for incompleteness, the XLF of LMXBs is well reproduced by a single power law with a slope of -1.0 - -1.5, which is in contrast to the previous report on the existence of the XLF break at Lx, Eddington = 2 x $10^{38}\;erg\;sec^{-1}$ (i.e., Eddington luminosity of a neutron star binary). Carefully considering both detected and undetected, hidden populations of point sources we further discuss the XLF of LMXBs and the metal abundance of the hot ISM and their impact on the properties of early type galaxies.

ICE ABSORPTION FEATURES IN NIR SPECTRA OF GALACTIC OBJECTS

  • Mori, Tamami I.;Onaka, Takashi;Sakon, Itsuki;Ohsawa, Ryou;Kaneda, Hidehiro;Yamagishi, Mitsuyoshi;Okada, Yoko;Tanaka, Masahiro;Shimonishi, Takashi
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.105-107
    • /
    • 2017
  • We present results of AKARI/IRC near-infrared (NIR) slit-spectroscopy ($2.5-5.0{\mu}m$, R ~ 100) of Galactic sources, focusing on ice absorption features. We investigate the abundance of $H_2O$ and $CO_2$ ices and other ice species (CO and XCN ices) along lines of sight towards Galactic H $\small{II}$ regions, massive YSOs, and infrared diffuse sources. Even among those different kinds of astronomical objects, the abundance ratio of $CO_2$ to $H_2O$ ices does not vary significantly, suggesting that the pathway to $CO_2$ ice formation driven by UV irradiation is not effective at least among the present targets.

OBSERVATIONS OF THERMAL TRANSITIONS OF SiO TOWARD THE SGR A MOLECULAR CLOUD (Sgr A 분자운의 열적 SiO 천이선 관측연구)

  • MINH Y. C.;ROH D.-G.;KIM S. J.;OHISHI M.
    • Publications of The Korean Astronomical Society
    • /
    • v.16 no.1
    • /
    • pp.15-20
    • /
    • 2001
  • We observed the thermal transitions of SiO (J=I-0, 2-1) and $^{29}SiO$ (J=l-O) toward the Sgr A molecular clouds. The distribution and the velocity structure of SiO are very similar to previous results for 'quiet' interstellar molecules. We think· that the SiO has been well mixed with other molecules such as $H_2$ which may indicate that the formation of Sgr A molecular clouds was affected by the activities, such as shock waves or energetic photons, from the Galactic center in large scales. The total column density of SiO is about $4.1\times10^{14} cm^{-2}$ and the fractional abundance $SiO/H_2$ appears to be about 10 times larger than those of other clouds in the central region of our galaxy. The derived values are thought to be lower limits since the optical depths of the observed SiO lines are not very thin. The formation of SiO has been known to be critically related to shocks, and our results provide informative data on the environment of our Galactic center.

  • PDF

OBSERVATIONS OF $HC_3N$ TOWARD THE SGR B2 MOLECULAR CLOUD

  • MINH Y. C.;KIM HYUN-GOO
    • Journal of The Korean Astronomical Society
    • /
    • v.31 no.2
    • /
    • pp.117-125
    • /
    • 1998
  • We have observed the 10-9 transitions of $HC_3N$ and its $^{13}C$ substitutes ($H^{13}CCCN,\;HC^{13}CCN$, and $HCC^{13}CN$), and the vibration ally excited 12-11 ($v_r=1$) $HC_3N$ transition toward the Sgr B2 molecular cloud. The observed $HC_3N$ emission shows an elongated shape around the Principal Cloud ($\~$4.5 pc in R.A. $\times$ 7.4 pc in Decl.). The optically thin $H^{13}CCCN$ line peaks around the (N) core and we derive the total column density $N(H^{13}CCCN) = 4 {\times}10^{13} cm^{-2}$ at this position. Toward the 2' N cloud which shows the peculiar chemistry, the $HC_3N$ lines show enhancements compared to the extended envelope. The shocks of the 2' N may have resulted in the enhancement of $HC_3N$. The hot component of $HC_3N$ is strongly concentrated around the (N) core and its HPW is $\~$0.9 pc in diameter. We derive the lower limit of the abundance ratio $N(HC_3N)/N(H^{13}CCCN)$ to be larger than 40 in most regions except the (M) and (N) cores. The fractionation processes of $^{13}C $at this region may not be as effective as previously reported.

  • PDF

PROPERTIES OF THE MOLECULAR CLUMP AND THE ASSOCIATED ULTRACOMPACT H II REGION IN THE GAS SHELL OF THE EXPANDING H II REGION SH 2-104

  • Minh, Young Chol;Kim, Kee-Tae;Yan, Chi-Hung;Park, Yong-Sun;Lee, Seokho;Lal, Dharam Vil;Hasegawa, Tatsuhiko;Zhang, X.Z.;Kuan, Yi-Jeng
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.5
    • /
    • pp.179-185
    • /
    • 2014
  • We study the physical and chemical properties of the molecular clump hosting a young stellar cluster, IRAS 20160+3636, which is believed to have formed via the "collect and collapse" process. Physical parameters of the UC H II region associated with the embedded cluster are measured from the radio continuum observations. This source is found to be a typical Galactic UC H II region, with a B0.5 type exciting star, if it is ionized by a single star. We derive a CN/HCN abundance ratio larger than 1 over this region, which may suggest that this clump is being affected by the UV radiation from the H II region.

PHYSICAL AND CHEMICAL PROPERTIES OF PLANETARY NEBULAE WITH WR-TYPE NUCLEI

  • DANEHKAR, ASHKBIZ;WESSON, ROGER;KARAKAS, AMANDA I.;PARKER, QUENTIN A.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.159-161
    • /
    • 2015
  • We have carried out optical spectroscopic measurements of emission lines for a sample of Galactic planetary nebulae with Wolf-Rayet (WR) stars and weak emission-line stars (wels). The plasma diagnostics and elemental abundance analysis have been done using both collisionally excited lines (CELs) and optical recombination lines (ORLs). It was found that the abundance discrepancy factors ($ADF{\equiv}ORL/CEL$) are closely correlated with the difference between temperatures derived from forbidden lines and those from $He\;{\small{I}}$ recombination lines, implying the existence of H-deficient materials embedded in the nebula. The $H{\beta}$ surface brightness correlations suggest that they might be also related to the nebular evolution.