• Title/Summary/Keyword: ISG motor

Search Result 13, Processing Time 0.023 seconds

Core Loss Effects on Electrical Steel Sheet of Wound Rotor Synchronous Motor for Integrated Starter Generator

  • Lee, Choong-Sung;Kim, Ji-Hyun;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.148-154
    • /
    • 2015
  • 48-V ISG (Integrated Starter Generator) system has attracted attention to improve the fuel efficiency of ICE (Internal Combustion Engine) vehicle. One of the key components that significantly affects the cost and performance of the 48-V ISG system is the motor. In an ISG motor, the core and copper loss make the motor efficiency change because the motor has a broad driving operated range and more diverse driving modes compared with other motors. When designing an ISG motor, the selection of an electrical steel sheet is important, because the electrical steel sheet directly influences the efficiency of the motor. In this paper, the efficiency of the ISG motor, considering core loss and copper loss, is analyzed by testing different types of electrical steel sheets with respect to the driving speed range and mode. Using the results of a finite element method (FEM) analysis, a method to select the electrical steel sheet is proposed. This method considers the cost of the steel sheet and the efficiency according to driving mode frequency during the design process of the motor. A wound rotor synchronous machine (WRSM) was applied to the ISG motor in this study.

An Analysis Study for Thermal Design of ISG (Integrated Starter & Generator) for Hybrid Electric Vehicle (하이브리드 차량용 ISG(Integrated Starter Generator)의 방열 설계를 위한 해석적 연구)

  • Kim, Dae Geon;Kim, Sung Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.120-127
    • /
    • 2013
  • Hybrid electric vehicles have applied electric parts for saving fuel consumption and reducing levels of environmental pollution. Electrification of automobiles is indispensable for entering into global market because of enhanced environment restriction. ISG (Integrated Starter & Generator) system is one of main electric parts and can improve fuel efficiency more than other components by using Idle Stop & Go function and regenerative braking system. However, if ISG motor and inverter work under the continuously high load condition, it will make them the decrease of performance and durability. So the ISG motor and inverter need to properly design the cooling system of them. In this study, we suggested the enhancement points by modifying the thermal design of ISG motor and then confirmed the improvement of the cooling performance.

Thermal Design and Analysis Evaluation of ISG Motor for Hybrid Electric Vehicles considering High-speed Driving Condition (고속 운전조건을 고려한 하이브리드 자동차용 ISG 모터 방열설계 및 해석 평가)

  • Kim, Sung Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.59-64
    • /
    • 2014
  • Integrated Starter Generator (ISG) system improves the fuel economy of hybrid electric vehicles by using idle stop and go function, and regenerative braking system. To obtain the high performance and durability of ISG motor under continuously high load condition, the motor needs to properly design the cooling system (cooling fan and cooling structure). In this study, we suggested the enhanced design by modifying the thermal design of the ISG motor and then analyzed the improvement of the cooling performance under high-speed condition and generating mode by CFD simulation. The temperatures at the coil and the magnet of the enhanced model were decreased by about $4^{\circ}C$ and $6^{\circ}C$, respectively, compared to those of the conventional model. Therefore, we verified the cooling performance enhancement of the novel thermal design in the case of core loss increment due to the higher speed condition.

Motor Control of a Parallel Hybrid Electric Vehicle during Mode Change without an Integrated Starter Generator

  • Song, Minseok;Oh, Joseph;Choi, Seokhwan;Kim, Yeonho;Kim, Hyunsoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.930-937
    • /
    • 2013
  • In this paper, a motor control algorithm for performing a mode change without an integrated starter generator (ISG) is suggested for the automatic transmission-based hybrid electric vehicle (HEV). Dynamic models of the HEV powertrains such as engine, motor, and mode clutch are derived for the transient state during the mode change, and the HEV performance simulator is developed. Using the HEV performance bench tester, the characteristics of the mode clutch torque are measured and the motor torque required for the mode clutch synchronization is determined. Based on the dynamic models and the mode clutch torque, a motor torque control algorithm is presented for mode changes, and motor control without the ISG is investigated and compared with the existing ISG control.

Development of crank shaft mounted ISG(Integrated Starter Generator) (크랭크축 직결형 42V기동/발전기(ISG)의 개발)

  • Bae Bon-ho;Yun Seok-Young;Sul Seung-ki
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.653-656
    • /
    • 2002
  • This paper presents the development of 15G(Integrate Starter Generator). The ISG is the crank shaft mount type and it is installed at tile flywheel. The wide operating range of ISG requires large constant power speed ratio, good overload performance and high efficiency. High saliency ratio permanent magnet motor is developed for the ISG applications and 500A MOSFET inverter is designed to derive the ISG. The characteristic of developed ISG is investigated using the special test-bed for the 42V PowerNet and the detailed results is presented

  • PDF

Design and Control Strategy for Autonomous and Seamless Mode Transition of High Efficiency Bidirectional DC-DC Converter for ISG Systems (ISG 시스템용 고효율 양방향 DC-DC 컨버터의 설계 및 자율적이며 끊김없는 모드전환을 위한 제어전략)

  • Park, Jun-Sung;Kwon, Min-Ho;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • In this study, a bidirectional DC-DC converter for idle stop and go (ISG) is developed to reduce fuel consumption. A three-phase non-isolated half-bridge converter is selected through a design method by considering efficiency and volume. According to the state of charge of the batteries at both the low-voltage and high-voltage sides, buck mode, which charges a low-voltage battery from the generated motor energy, and boost mode, which provides power to the motor from the low- and high-voltage battery sides, are required in the ISG system. Hence, an autonomous and seamless bidirectional control method using a variable current limiter is proposed for mode change. A 1.8 kW engineering sample of the proposed converter has been built and tested to verify the validity of the proposed concept. The maximum efficiencies, including gate driver and control circuit losses, are 96.4% in charging mode and 96.1% in discharging mode.

Optimal Design of Field-Excitation Flux-Switching Synchronous Machine for ISG Application (계자권선형 12슬롯-10극 자속 역전식 동기 전동기의 최적 설계)

  • Koo, Bon-Kil;Jung, Il-Su;Nam, Kwang-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.23-24
    • /
    • 2013
  • In recent years, ISG (Integrated Starter and Generator) system receives a great attention for electric electrification of normal gasoline vehicle. As a cost-effect machine design, an ISG without a permanent magnet is considered. A 12slot-10pole field-excitation flux-switching synchronous machine (FEFSSM) is designed and analyzed via JMAG. The active parts such as the field excitation coil and armature coil are located on the stator. The rotor part consisting of single piece iron makes it more robust and suitable to apply for high speed motor drive system application coupled with reduction belt. The design target is the motor with a maximum torque of 40Nm, a maximum power of 10kW and a maximum speed of 14000 rpm. In this paper, design optimization method is proposed for high torque capability.

  • PDF

Design and Characteristic Analysis of Wound Rotor Synchronous Motor for ISG according to Field Current Combination (계자전류 조합에 따른 ISG용 권선형 동기전동기의 설계 및 특성분석)

  • Kwon, Sung-Jun;Lee, Dongsu;Jung, Sang-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1228-1233
    • /
    • 2013
  • In this paper, design of Wound Rotor Synchronous Motor(WRSM) for Integrated Starter and Generator(ISG) is performed based on Finite Element Analysis(FEA). WRSM can control not only magnitude and phase of armature current, but also field current. Thus, various control methods can be considered. Since driving characteristic of WRSM depends greatly on the control method, characteristic analysis accoding to possible driving current combination is reguired. Especially in high speed region, the control method that reduces unnecessary d-axis current by reducing field current is possible, which is similar to field weakening control. By the current combination reducing field and d-axis current, the design minimizing copper loss to increase efficiency on identical driving point is possible. In this paper, high efficient WRSM is designed applying the current combination which can minimize copper loss on each driving point.

Thermal Analysis of Water Cooled ISG Based on a Thermal Equivalent Circuit Network

  • Kim, Kyu-Seob;Lee, Byeong-Hwa;Jung, Jae-Woo;Hong, Jung-Pyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.893-898
    • /
    • 2014
  • Recently, the interior permanent synchronous motor (IPMSM) has been applied to an integrated starter and generator (ISG) for hybrid electric vehicles. In the design of such a motor, thermal analysis is necessary to maximize the power density because the loss is proportional to the power of a motor. Therefore, a cooling device as a heat sink is required internally. Generally, a cooling system designed with a water jacket structure is widely used for electric motors because it has advantages of simple structure and cooling effectiveness. An effective approach to analyze an electric machine with a water jacket is a thermal equivalent network. This network is composed of thermal resistance, a heat source, and thermal capacitance that consider the conduction, convection, and radiation. In particular, modeling of the cooling channel in a network is challenging owing to the flow of the coolant. In this paper, temperature prediction using a thermal equivalent network is performed in an ISG that has a water cooled system. Then, an experiment is conducted to verify the thermal equivalent network.

Design Considerations for Low Voltage Claw Pole Type Integrated Starter Generator (ISG) Systems

  • Lee, Geun-Ho;Choi, Geo-Seung;Choi, Woong-Chul
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.527-532
    • /
    • 2011
  • Due to the need for improved fuel consumption and the trend towards increasing the electrical content in automobiles, integrated starter generator (ISG) systems are being considered by the automotive industry. In this paper, in order to change the conventional generator of a vehicle, a belt driven integrated starter generator is considered. The overall ISG system, the design considerations for the claw pole type AC electric machine and a low voltage very high current power stage implementation are discussed. Test data on the low voltage claw pole type machine is presented, and a large current voltage source DC/AC inverter suitable for low voltage integrated starter generator operation is also presented. A metal based PCB (Printed Circuit Board) power unit to attach the 4-parallel MOS-FETs is used to achieve extremely high current capability. Furthermore, issues related to the torque assistance during vehicle acceleration and the generation/regeneration characteristics are discussed. A prototype with the capability of up to 1000 A and 27 V is designed and built to validate the kilo-amp inverter.