• Title/Summary/Keyword: IS-object task.

Search Result 469, Processing Time 0.025 seconds

Repetition Antipriming: The Effects of Perceptual Ambiguity on Object Recognition (반복 반점화: 지각적 모호성이 물체 재인에 미치는 영향)

  • Kim, Ghoo-Tae;Yi, Do-Joon
    • Korean Journal of Cognitive Science
    • /
    • v.21 no.4
    • /
    • pp.603-625
    • /
    • 2010
  • Neural representation of a visual object is distributed across visual cortex and overlapped with those of many other objects. Thus repeating an object facilitates the recognition of the object while it impairs the recognition of other objects. These effects are called repetition priming and antipriming, respectively. Two experiments investigated a new phenomenon of repetition antipriming, in which a repeated object itself is antiprimed. The learning stage presented object pictures which were degraded at various levels. Participants determined how recognizable each object was. Then, the test stage presented the intact version of the object pictures and made participants to perform a categorization task. Both Experiment 1 and 2 found that the processing of the objects that had been recognized were facilitated (repetition priming) while the processing of the objects that had been perceptually ambiguous were impaired (repetition antipriming). These findings suggest that experiencing a perceptually ambiguous object might enhance the connection between feature-level representations and multiple object-level representations, which impairs the subsequent recognition of the repeated object.

  • PDF

Optimal Grasp Planning of Object Based on Weighted Composite Grasp Index (가중치를 갖는 복합 파지 지수를 기반으로 한 물체의 파지 계획)

  • Kim, Byoung-Ho;Yi, Byung-Ju;Oh, Sang-Rok;Suh, Il-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.1003-1012
    • /
    • 2000
  • When a robot hand grasp an object, the number of ways to grasp it stably are infinite and thus an optimal grasp planning is needed to find the optimal grasp points for satisfying the objective of the given task. In this paper, we first define some grasp indices to evaluate the quality of each feasible grasp and then a weighted composite grasp index by combining all of the grasp indices is also defined. Next, we propose a method to find the optimal grasp points of the given object by comparing the defined weighted composite grasp index for each feasible grasp points. By simulation results, we show the effectiveness of the proposed optimal grasp planning method and also discuss the trend of each grasp index as the grasp polygon.

  • PDF

An active object-oriented directory database model for management of telecommunication (통신망 관리를 위한 능동 객체 지향 디렉토리 데이타베이스 모델)

  • 이재호;임해철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.2
    • /
    • pp.435-446
    • /
    • 1996
  • In this paper, we present database model of directory systems that perform a task for distributed information repositories in communication network environments. A new model is developed through four phase: (1) A diretory database information is classified that would be stored in directory database as user, administrative, and supplementary information. (2) The modeling criteria are captured that would be used to model information classified. (3) Object-Oriented concepts are used in modeling classified information according to modeling criteria captured. (4) Methods applied to developed model are grouped, and active-based mechanisms such as trigger and constraints are developed. These selected methods and attributes are encapsulated into objects. Consequently they compose an Active Object-Oriented Directory Database Model.

  • PDF

A Study of Object Recognition for the Efficient Management of Construction Equipment

  • Hyeok-Jun Ryu;Suk-Won Lee;Ju-Hyung Kim;Jae-Jun Kim
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.587-591
    • /
    • 2013
  • Measuring the process of construction operations for productivity improvement remains a difficult task for most construction companies due to the manual effort required in most activity measurement methods. There are many ways to measuring the process. But past measurement methods was inefficient. Because they needed a lot of manpower and time. So, this article focus on the vision-based object recognition and tracking methods for automated construction. These methods have the advantage of efficient that human intervention was reduced. Therefore, this article is analyzed the performance of vision-based methods in the construction sites and is expected to contribute to selection of vision-based methods.

  • PDF

Survey on Deep Learning-based Panoptic Segmentation Methods (딥 러닝 기반의 팬옵틱 분할 기법 분석)

  • Kwon, Jung Eun;Cho, Sung In
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.5
    • /
    • pp.209-214
    • /
    • 2021
  • Panoptic segmentation, which is now widely used in computer vision such as medical image analysis, and autonomous driving, helps understanding an image with holistic view. It identifies each pixel by assigning a unique class ID, and an instance ID. Specifically, it can classify 'thing' from 'stuff', and provide pixel-wise results of semantic prediction and object detection. As a result, it can solve both semantic segmentation and instance segmentation tasks through a unified single model, producing two different contexts for two segmentation tasks. Semantic segmentation task focuses on how to obtain multi-scale features from large receptive field, without losing low-level features. On the other hand, instance segmentation task focuses on how to separate 'thing' from 'stuff' and how to produce the representation of detected objects. With the advances of both segmentation techniques, several panoptic segmentation models have been proposed. Many researchers try to solve discrepancy problems between results of two segmentation branches that can be caused on the boundary of the object. In this survey paper, we will introduce the concept of panoptic segmentation, categorize the existing method into two representative methods and explain how it is operated on two methods: top-down method and bottom-up method. Then, we will analyze the performance of various methods with experimental results.

A Study on the Motion Object Detection Method for Autonomous Driving (자율주행을 위한 동적 객체 인식 방법에 관한 연구)

  • Park, Seung-Jun;Park, Sang-Bae;Kim, Jung-Ha
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.5
    • /
    • pp.547-553
    • /
    • 2021
  • Dynamic object recognition is an important task for autonomous vehicles. Since dynamic objects exhibit a higher collision risk than static objects, our own trajectories should be planned to match the future state of moving elements in the scene. Time information such as optical flow can be used to recognize movement. Existing optical flow calculations are based only on camera sensors and are prone to misunderstanding in low light conditions. In this regard, to improve recognition performance in low-light environments, we applied a normalization filter and a correction function for Gamma Value to the input images. The low light quality improvement algorithm can be applied to confirm the more accurate detection of Object's Bounding Box for the vehicle. It was confirmed that there is an important in object recognition through image prepocessing and deep learning using YOLO.

The development of the anomia assessment battery based on the psycholinguistic processing (언어심리학을 기반으로 한 명칭성 실어증 평가도구 개발)

  • Jung, Jae-Bum;Pyun, Sung-Bom;Sohn, Hyo-Jung;Gee, Sung-Woo;Cho, Sung-Ho;Nam, Ki-Chun
    • Proceedings of the KSPS conference
    • /
    • 2007.05a
    • /
    • pp.158-162
    • /
    • 2007
  • Anomia, word finding difficulty, is one of the most common feature in aphasia. Previous studies support that the process of picture naming consists of three stages, in the order of the object recognition, semantic, and phonological output stages. Anomic patients have many symptoms and it means that anomia can be sub-divided into several symptom groups. Our anomia assessment battery consists of several parts: (1) picture naming set, (2) picture-word matching task, (3) lexical decision task for mental lexicon damage, (4) naming task for phonological lexicon damage, and (5) semantic decision task. Pictures and words were selected on the basis of usage frequency, semantic category, and word length. We administered this anomia evaluation battery to many anomic aphasics and we subdivided patients into several groups. We hope that our anomia evaluation set is useful and helpful for evaluation anomic aphasics

  • PDF

Visual Cohesion Improvement Technology by Clustering of Abstract Object (추상화 객체의 클러스터링에 의한 가시적 응집도 향상기법)

  • Lee Jeong-Yeal;Kim Jeong-Ok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.4 s.32
    • /
    • pp.61-69
    • /
    • 2004
  • The user interface design needs to support the complex interactions between human and computers. It also requires comprehensive knowledges many areas to collect customer's requirements and negotiate with them. The user interface designer needs to be a graphic expert, requirement analyst, system designer, programmer, technical expert, social activity scientist, and so on. Therefore, it is necessary to research on an designing methodology of user interface for satisfying various expertise areas. In the paper, We propose the 4 business event's abstract object visualizing phases such as fold abstract object modeling, task abstract object modeling, transaction abstract object modeling, and form abstract object modeling. As a result, this modeling method allows us to enhance visual cohesion of UI, and help unskilled designer to can develope the higy-qualified user interface.

  • PDF

Object Detection and Post-processing of LNGC CCS Scaffolding System using 3D Point Cloud Based on Deep Learning (딥러닝 기반 LNGC 화물창 스캐닝 점군 데이터의 비계 시스템 객체 탐지 및 후처리)

  • Lee, Dong-Kun;Ji, Seung-Hwan;Park, Bon-Yeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.5
    • /
    • pp.303-313
    • /
    • 2021
  • Recently, quality control of the Liquefied Natural Gas Carrier (LNGC) cargo hold and block-erection interference areas using 3D scanners have been performed, focusing on large shipyards and the international association of classification societies. In this study, as a part of the research on LNGC cargo hold quality management advancement, a study on deep-learning-based scaffolding system 3D point cloud object detection and post-processing were conducted using a LNGC cargo hold 3D point cloud. The scaffolding system point cloud object detection is based on the PointNet deep learning architecture that detects objects using point clouds, achieving 70% prediction accuracy. In addition, the possibility of improving the accuracy of object detection through parameter adjustment is confirmed, and the standard of Intersection over Union (IoU), an index for determining whether the object is the same, is achieved. To avoid the manual post-processing work, the object detection architecture allows automatic task performance and can achieve stable prediction accuracy through supplementation and improvement of learning data. In the future, an improved study will be conducted on not only the flat surface of the LNGC cargo hold but also complex systems such as curved surfaces, and the results are expected to be applicable in process progress automation rate monitoring and ship quality control.

High-Frequency Interchange Network for Multispectral Object Detection (다중 스펙트럼 객체 감지를 위한 고주파 교환 네트워크)

  • Park, Seon-Hoo;Yun, Jun-Seok;Yoo, Seok Bong;Han, Seunghwoi
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1121-1129
    • /
    • 2022
  • Object recognition is carried out using RGB images in various object recognition studies. However, RGB images in dark illumination environments or environments where target objects are occluded other objects cause poor object recognition performance. On the other hand, IR images provide strong object recognition performance in these environments because it detects infrared waves rather than visible illumination. In this paper, we propose an RGB-IR fusion model, high-frequency interchange network (HINet), which improves object recognition performance by combining only the strengths of RGB-IR image pairs. HINet connected two object detection models using a mutual high-frequency transfer (MHT) to interchange advantages between RGB-IR images. MHT converts each pair of RGB-IR images into a discrete cosine transform (DCT) spectrum domain to extract high-frequency information. The extracted high-frequency information is transmitted to each other's networks and utilized to improve object recognition performance. Experimental results show the superiority of the proposed network and present performance improvement of the multispectral object recognition task.