• Title/Summary/Keyword: IR radiation

Search Result 361, Processing Time 0.029 seconds

Recent Developments Involving the Application of Infrared Thermal Imaging in Agriculture

  • Lee, Jun-Soo;Hong, Gwang-Wook;Shin, Kyeongho;Jung, Dongsoo;Kim, Joo-Hyung
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.280-293
    • /
    • 2018
  • The conversion of an invisible thermal radiation pattern of an object into a visible image using infrared (IR) thermal technology is very useful to understand phenomena what we are interested in. Although IR thermal images were originally developed for military and space applications, they are currently employed to determine thermal properties and heat features in various applications, such as the non-destructive evaluation of industrial equipment, power plants, electricity, military or drive-assisted night vision, and medical applications to monitor heat generation or loss. Recently, IR imaging-based monitoring systems have been considered for application in agricultural, including crop care, plant-disease detection, bruise detection of fruits, and the evaluation of fruit maturity. This paper reviews recent progress in the development of IR thermal imaging techniques and suggests possible applications of thermal imaging techniques in agriculture.

Relation Between Flat-band Voltage and Quantum Efficiency of InSb MWIR Detector (InSb 중적외선 검출기의 Flat-band 전압과 양자효율의 상관관계)

  • Kim, Young-Chul;Eom, JunHo;Jung, Han;Kim, SunHo;Kim, NamHwan;Kim, Young-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.12-15
    • /
    • 2018
  • InSb (III-V compound semiconductor) is used for photodiode to detect the mid-wavelength infrared radiation. Generally the quantum efficiency of InSb IR FPAs(Focal Plane Arrays) is known to be determined by thickness of InSb and transmittance of anti-reflection coating layer. In this study, we confirmed that the C-V characteristics of detector array affects the quantum efficiency of the InSb IR FPAs. We fabricated the IR FPAs with various $V_{fb}$(flat band voltage) values and confirmed the tendency between the $V_{fb}$ value and quantum efficiency of the IR FPAs.

A Variety of Activation Methods Employed in “Activated-Ion” Electron Capture Dissociation Mass Spectrometry: A Test against Bovine Ubiquitin 7+ Ions

  • Oh, Han-Bin;McLafferty, Fred W.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.3
    • /
    • pp.389-394
    • /
    • 2006
  • Fragmentation efficiencies of various ‘activated-ion’ electron capture dissociation (AI-ECD) methods are compared for a model system of bovine ubiquitin 7+ cations. In AI-ECD studies, sufficient internal energy was given to protein cations prior to ECD application using IR laser radiation, collisions, blackbody radiation, or in-beam collisions, in turn. The added energy was utilized in increasing the population of the precursor ions with less intra-molecular noncovalent bonds or enhancing thermal fluctuations of the protein cations. Removal of noncovalent bonds resulted in extended structures, which are ECD friendly. Under their best conditions, a variety of activation methods showed a similar effectiveness in ECD fragmentation. In terms of the number of fragmented inter-residue bonds, IR laser/blackbody infrared radiation and ‘in-beam’ activation were almost equally efficient with ~70% sequence coverage, while collisions were less productive. In particular, ‘in-beam’ activation showed an excellent effectiveness in characterizing a pre-fractionated single kind of protein species. However, its inherent procedure did not allow for isolation of the protein cations of interest.

The effect of Far-infrared on survival rate of mice (원적외선이 흰쥐의 생존율에 미치는 영향)

  • Kim, Jae-Yoon;Park, Seung-Kyu;Kim, Jin-Sang;Park, Rae-Joon
    • The Journal of Korean Physical Therapy
    • /
    • v.13 no.3
    • /
    • pp.561-567
    • /
    • 2001
  • IR classified by wavelength three parts NIR, MIR. FIR. There is FIR which is radiated from healthy human body the wave length is 8-14m. The Sun's ray is composed of Infared(49%), Visible light(40%) and Ultra violet(11%), however the ray getting to the earth is FIR(60%), IR(20%), and UV(20%). Human beings has utilized FIR already from time immemorial. Hershel found out Infrared for the first time, in the Industrial Revolution the Infrared and FIR had been begun to use making products. FIR with low temperature can deeply penetrate on the human body composed things without troublesome, since FIR has effectively operated on the human body at low temperature (35-40 $^{\circ}$C). In this study, we experimented in the specific temperature FlR radiation intensity. water consumption rate, feed consumption rate. survival rate and mean of weight balance with FlR radiation instrument. According to the results, the FlR radiation to the mice assisted to increase the survival rate.

  • PDF

Characteristics and Effects of Radiation Treatment on Wood Pulping Process (목재 펄프 제조 공정에서의 방사선 효과 및 특성)

  • Won, So Ra;Shin, Hye Kyoung;Jeun, Joon Pyo;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.5 no.3
    • /
    • pp.227-230
    • /
    • 2011
  • Pulps were separated from wood chips using an Electron beam irradiation (EBI) treatment without a NaOH-AQ (anthraquinone) treatment for cooking. The methods were based on a hot water treatment after EBI and two-step bleaching processes. Chemical compositions and FT-IR spectroscopy demonstrated that the content of lignin and hemicellulose in the bleached wood pulps treated with various EBI dose decreased with an increase of EBI doses. Specifically, the lignin in the bleached with pulps treated at 600 kGy of EBI dose was almost completely removed. Moreover, TGA analysis showed that a thermal stability increased with increasing the content of cellulose but the lignin decomposed slowly over the wide region.

Optimization of Image Tracking Algorithm Used in 4D Radiation Therapy (4차원 방사선 치료시 영상 추적기술의 최적화)

  • Park, Jong-In;Shin, Eun-Hyuk;Han, Young-Yih;Park, Hee-Chul;Lee, Jai-Ki;Choi, Doo-Ho
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.8-14
    • /
    • 2012
  • In order to develop a Patient respiratory management system includinga biofeedback function for4-dimentional radiation therapy, this study investigated anoptimal tracking algorithmfor moving target using IR (Infra-red) camera as well as commercial camera. A tracking system was developed by LabVIEW 2010. Motion phantom images were acquired using a camera (IR or commercial). After image process were conducted to convert acquired image to binary image by applying a threshold values, several edge enhance methods such as Sobel, Prewitt, Differentiation, Sigma, Gradient, Roberts, were applied. The targetpattern was defined in the images, and acquired image from a moving targetwas tracked by matching pre-defined tracking pattern. During the matching of imagee, thecoordinateof tracking point was recorded. In order to assess the performance of tracking algorithm, the value of score which represents theaccuracy of pattern matching was defined. To compare the algorithm objectively, we repeat experiments 3 times for 5 minuts for each algorithm. Average valueand standard deviations (SD) of score were automatically calculatedsaved as ASCII format. Score of threshold only was 706, and standard deviation was 84. The value of average and SD for other algorithms which combined edge detection method and thresholdwere 794, 64 in Sobel, 770, 101 in Differentiation, 754, 85 in Gradient, 763, 75 in Prewitt, 777, 93 in Roberts, and 822, 62 in Sigma, respectively. According to score analysis, the most efficient tracking algorithm is the Sigma method. Therefore, 4-dimentional radiation threapy is expected tobemore efficient if threshold and Sigma edge detection method are used together in target tracking.

The Use of MTT Assay, In Vitro and Ex Vivo, to Predict the Radiosensitivity of Colorectal Cancer (In-vitro와 Ex-vivo MTT Assay를 통한 직장암의 방사선치료 감수성 예측 가능성 검증)

  • Kim, Ji-Eun;Kim, Mi-Sook;Kang, Chang-Mo;Kim, Jong-Il;Shin, Hye-Kyung;Choi, Chul-Won;Seo, Young-Seok;Ji, Young-Hoon
    • Radiation Oncology Journal
    • /
    • v.26 no.3
    • /
    • pp.166-172
    • /
    • 2008
  • Purpose: The measurement of radiosensitivity of individuals is useful in radiation therapy. Unfortunately, the measurement of radiation survival using a clonogenic assay, which is the established standard, can be difficult and time consuming. The aim of this study is to compare radiosensitivity results obtained from the MTT and clonogenic assays, and to evaluate whether the MTT assay can be used on clinical specimens. Materials and Methods: HCT-8, LoVo, CT-26, and WiDr were the colon cancer cell lines used for this study. The clonogenic assay was performed to obtain the cell survival curves and surviving fractions at a dose of 2 Gy ($SF_2$) as the standard technique for radiosensitivity. Also, the MTT assay was performed for each of the cell lines (in vitro). To simulate clinical specimens, the cell lines were inoculated into nude mice, removed when the tumors reached 1 cm in diameter, and chopped. Next, the tumors were subjected to the same process involved with the MTT assay in vitro. The inhibition rates (IR) of 10 Gy or 20 Gy of irradiation for in vitro and ex vivo were calculated based on the optical density of the MTT assay, respectively. Results: According to $SF_2$ and the cell survival curve, the HCT-8 and WiDr cell lines were more resistant to radiation than LoVo and CT-26 (p<0.05). The IR was measured by in vitro. The MTT assay IR was 17.3%, 21%, 30% and 56.5% for the WiDr, HCT-8, LoVo and CT-26 cell lines, respectively. In addition, the IR measured ex vivo by the MTT assay was 23.5%, 26%, 38% and 53% in the HCT-8, WiDr, LoVo and CT-26 tumors, respectively. Conclusion: The radiosensitivity measured by the MTT assay was correlated with the measures obtained from the clonogenic assay. This result highlights the possibility that the MTT assay could be used in clinical specimens for individual radiosensitivity assays.

Korean Red Ginseng saponin fraction modulates radiation effects on lipopolysaccharide-stimulated nitric oxide production in RAW264.7 macrophage cells

  • Lee, Young Ji;Han, Jeong Yoon;Lee, Chang Geun;Heo, Kyu;Park, Se Il;Park, Yoo Soo;Kim, Joong Sun;Yang, Kwang Mo;Lee, Ki-Ja;Kim, Tae-Hwan;Rhee, Man Hee;Kim, Sung Dae
    • Journal of Ginseng Research
    • /
    • v.38 no.3
    • /
    • pp.208-214
    • /
    • 2014
  • Background: In previous work, we reported that Korean Red Ginseng saponin fraction (RGSF) showed anti-inflammatory activities in vitro and in vivo. Methods: The present study investigated the radioprotective properties of RGSF by examining its effects on ionizing radiation (IR)-enhanced and lipopolysaccharide (LPS)-mediated inflammatory responses in murine macrophage cells. Results: RGSF induced strong downregulation of IR-enhanced and LPS-induced proinflammatory responses such as nitric oxide (NO) production (Inhibitory Concentration $50(IC_{50})=5.1{\pm}0.8{\mu}M$) and interleukin-$1{\beta}$ levels. RGSF was found to exert its radioprotective effects by inhibition of a signaling cascade that activated checkpoint kinase 2enuclear factor-${\kappa}B$. In addition, RGSF strongly inhibited IR-enhanced LPS-induced expression of hemoxyganase-1, implying that the latter may be a potential target of RGSF. Conclusion: Taken together, our data suggest that RGSF can be considered and developed for use as an effective radioprotective agent with minimal adverse effects.

Infrared Signal Measurement with Bypass Ratio in a Small Engine Simulating a Turbofan (터보팬을 모사한 소형 엔진에서의 바이패스 비에 따른 적외선 신호 측정)

  • Choi, Jaewon;Jang, Hyeonsik;Kim, Hyemin;Choi, Seongman
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.5
    • /
    • pp.34-42
    • /
    • 2020
  • In modern air combat, infrared signals play an important role in the detection of opponents and must be reduced to improve survivability and stealth. In particular, IR signals generated in the wake of aircraft engines have high intensity and short wavelengths, so most heat-tracking missiles detect these signals. Accordingly, the measurement and characteristic analysis of Gas radiation signals from the engine's wake were carried out in this study. Micro turbojet engine has been configured to simulate a real aircraft turbofan engine, and the characteristics of IR signal reduction by adjusting the bypass ratio were identified. Through this, the IR signal characteristics for each wavelength are analyzed and verification of signal reduction technologies is performed.

Estimation of Noise Level and Edge Preservation for Computed Tomography Images: Comparisons in Iterative Reconstruction

  • Kim, Sihwan;Ahn, Chulkyun;Jeong, Woo Kyoung;Kim, Jong Hyo;Chun, Minsoo
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.92-98
    • /
    • 2021
  • Purpose: This study automatically discriminates homogeneous and structure edge regions on computed tomography (CT) images, and it evaluates the noise level and edge preservation ratio (EPR) according to the different types of iterative reconstruction (IR). Methods: The dataset consisted of CT scans of 10 patients reconstructed with filtered back projection (FBP), statistical IR (iDose4), and iterative model-based reconstruction (IMR). Using the 10th and 85th percentiles of the structure coherence feature, homogeneous and structure edge regions were localized. The noise level was estimated using the averages of the standard deviations for five regions of interests (ROIs), and the EPR was calculated as the ratio of standard deviations between homogeneous and structural edge regions on subtraction CT between the FBP and IR. Results: The noise levels were 20.86±1.77 Hounsfield unit (HU), 13.50±1.14 HU, and 7.70±0.46 HU for FBP, iDose4, and IMR, respectively, which indicates that iDose4 and IMR could achieve noise reductions of approximately 35.17% and 62.97%, respectively. The EPR had values of 1.14±0.48 and 1.22±0.51 for iDose4 and IMR, respectively. Conclusions: The iDose4 and IMR algorithms can effectively reduce noise levels while maintaining the anatomical structure. This study suggested automated evaluation measurements of noise levels and EPRs, which are important aspects in CT image quality with patients' cases of FBP, iDose4, and IMR. We expect that the inclusion of other important image quality indices with a greater number of patients' cases will enable the establishment of integrated platforms for monitoring both CT image quality and radiation dose.