• 제목/요약/키워드: IR lens

검색결과 68건 처리시간 0.037초

ESPI를 이용한 안경용 렌즈의 열변형 측정 (Thermal Deformation Measurement Spherical Glasses Lens Using ESPI)

  • 김경석;장호섭;김현민;양승필
    • 비파괴검사학회지
    • /
    • 제28권2호
    • /
    • pp.137-143
    • /
    • 2008
  • 안경용 구면 렌즈는 굴절력에 따라 (+)디옵터와 (-)디옵터 렌즈로 구분할 수 있다. 렌즈에 가해지는 외부 열원에 의해서 생기는 열변형은 디옵터의 종류에 따라 다르게 나타난다. 본 논문에서는 빛의 가간섭성을 이용하여 물체의 변형을 비접촉으로 정확하게 측정할 수 있는 전자처리 스페클법을 이용하여 렌즈에 발생되는 열변형을 정량적으로 측정하였다. 외부 열원에 의한 온도 분포의 측정은 실시간 비접촉으로 온도를 측정할 수 있는 적외선 열화상 카메라를 사용하였다. 실험은 총 14종의 플라스틱 상용 안경 렌즈를 대상으로 수행하였다. 동일한 온도차에서 (+)디옵터 렌즈의 경우에는 디옵터의 증가에 따라서 열변형량이 증가하였다. 반면에 (-)디옵터 렌즈는 디옵터의 증가와 관계없이 열변형량이 거의 선형적이었다. 또한 동일한 디옵터에서 (+)디옵터 렌즈의 열변형량이 (-)디옵터 렌즈의 열변형량 보다 작았다. 따라서 본 논문에서는 렌즈에 열이 가해지는 경우 렌즈의 열변형량을 정량적으로 측정할 수 있음을 확인하였다.

몰드성형 광학렌즈를 이용한 의료기기용 열화상카메라 체열진단의 적용도 평가 (Evaluation of Thermography Camera Using Molded Optical Lens for Medical Applications)

  • 유성미;김혜정
    • 한국전기전자재료학회논문지
    • /
    • 제26권8호
    • /
    • pp.624-628
    • /
    • 2013
  • With the recent development of less-costly uncooled detector technology, expensive optics are among the remaining significant cost drivers in the thermography camera. As a potential solution to this problem, the fabrication of IR lenses using chalcogenide glass has been studied in recent years. We report on the molding and evaluation of a ultra-precision chalcogenide-glass lens for the thermography camera for body-temperature monitoring. In addition, we fabricated prototype thermography camera using the chalcogenide-glass lens and obtained the thermal image from the camera. In this work, it was found out that thermography camera discerned body-temperature between 20 and $50^{\circ}C$ through the analysis of thermal image. It is confirmed that thermography camera using the chalcogenide-glass lens is applicable to the body-temperature monitoring system.

적외선 광학렌즈 제작을 위한 GeSe의 벌크 제작 및 특성 연구 (A Study on the Properties and Fabrication of Bulk Forming GeSe Based Chalcogenide Glass for Infrared Optical Lens)

  • 배동식;여종빈;박정후;이현용
    • 한국전기전자재료학회논문지
    • /
    • 제26권9호
    • /
    • pp.641-645
    • /
    • 2013
  • Chalcogenide glass has superior property of optical transmittance in the infrared region. Glass made using Ge-Se how many important optical applications. We have determined the composite formular of $Ge_{0.25}Se_{0.75}$ to be the GeSe chalcogenide glass composition appropriate for IR lenses. Also, the optical, thermal and physical characteristics of chalcogenide glass depended on the composition ratio. GeSe bulk sample is produced using the traditional melt-quenching method. The optical, structural, thermal and physical properties of the compound were measured by using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Differential scanning calorimeter (DSC), and Scanning electron microscope (SEM) respectively.

Infrared Scanning Near-Field Optical Microscopy (IR-SNOM) Below the Diffraction Limit

  • Sanghera, J.S.;Aggarwal, I.D.;Cricenti, A.;Generossi, R.;Luce, M.;Perfetti, P.;Margoritondo, G.;Tolk, N.;Piston, D.
    • 세라미스트
    • /
    • 제10권3호
    • /
    • pp.55-66
    • /
    • 2007
  • Infrared Scanning Near-field Optical Microscopy (IR-SNOM) is an extremely powerful analytical instrument since it combines IR spectroscopy's high chemical specificity with SNOM's high spatial resolution. In order to do this in the infrared, specialty chalcogenide glass fibers were fabricated and their ends tapered to generate SNOM probes. The fiber tips were installed in a modified near field microscope and both inorganic and biological samples illuminated with the tunable output from a free-electron laser located at Vanderbilt University. Both topographical and IR spectral images were simultaneously recorded with a resolution of ${\sim}50\;nm$ and ${\sim}100\;nm$, respectively. Unique spectroscopic features were identified in all samples, with spectral images exhibiting resolutions of up to ${\lambda}/60$, or at least 30 times better than the diffraction limited lens-based microscopes. We believe that IR-SNOM can provide a very powerful insight into some of the most important bio-medical research topics.

  • PDF

우주관측용 광학계의 적외선 초자 초정밀 가공 기술개발 (Development of the Ultra Precision Machining of IR Material for Space Observation Optical System)

  • 양순철;원종호
    • 한국정밀공학회지
    • /
    • 제27권12호
    • /
    • pp.9-14
    • /
    • 2010
  • Using an IR (infrared) optical system of observation and research were performed long before. Nowadays satellites equipped with IR optical system observe the earth and universe. In this paper, we developed the IR optical system for main payload of the STSAT-3 (Science and Technology Satellite -3). We studied the ultra precision machining technique to fabricate FPL-53 lenses which is the IR optical material for space observation camera of the STSAT-3. DOE (Design of Experiment) was used to find best machining characteristic for FPL-53. Finally we fabricated FPL-53 aspheric lens with the form accuracy of P-V $0.36\;{\mu}m$.

열변형 보정을 통한 열화상카메라용 초정밀 칼코지나이드 유리렌즈 몰드성형 및 특성 평가 (Molding and Evaluation of Ultra-Precision Chalcogenide-Glass Lens for Thermal Imaging Camera Using Thermal Deformation Compensation)

  • 차두환;김정호;김혜정
    • 한국전기전자재료학회논문지
    • /
    • 제27권2호
    • /
    • pp.91-96
    • /
    • 2014
  • Aspheric lenses used in the thermal imaging are typically fabricated using expensive single-crystal materials (Ge and ZnS, etc.) by the costly single point diamond turning (SPDT) process. As a potential solution to reduce cost, compression molding method using chalcogenide glass has been attracted to fabricate IR optic. Thermal deformation of a molded lens should be compensated to fabricate chalcogenide aspheric lens with form accuracy of the submicron-order. The thermal deformation phenomenon of molded lens was analyzed ant then compensation using mold iteration process is followed to fabricate the high accuracy optic. Consequently, it is obvious that compensation of thermal deformation is critical and useful enough to be adopted to fabricate the lens by molding method.

비구면렌즈 설계를 위한 칼코게나이드 Ge-Sb-Se계 구조적, 광학적 특성 연구 (Structural and Optical Characteristics of ChalcogenideGe_Sb_Se for Basic Aspheric Lens Design)

  • 고준빈;명태식
    • 한국생산제조학회지
    • /
    • 제23권2호
    • /
    • pp.133-137
    • /
    • 2014
  • The recent development of electro-optic devices and anticorrosion media has made it necessary investigate infrared optical systems with solid-solid interfaces of materials with amorphous characteristics. One of the most promising classes of materials for these purposes seems to be chalcogenide glasses, which are based on the Ge_Sb_Se system, have drawn much attention because of their use in preparing optical lenses and fibers that are transparent in the range of 3-12 um. In this study, a standard melt-quenching technique was used to prepare amorphous Ge_Sb_Sechalcogenideto be used in the design and manufacture of infrared optical products. The results of structural, optical, and surface roughness analyses of high purity Ge_Sb_Sechalcogenide glasses after various annealing processes reported.

비구면렌즈 설계를 위한 칼코게나이드 Ge-Sb-Se 광학계 및 결정화 특성 연구 (Chalcogenide Ge-Sb-Se Optical and Crystallization Characteristics for Basic a Planning Aspheric Lens)

  • 명태식;고준빈
    • 한국재료학회지
    • /
    • 제26권11호
    • /
    • pp.598-603
    • /
    • 2016
  • The recent development of electro-optic devices and anticorrosion media has led to the necessity to investigate infrared optical systems with solid-solid interfaces of materials that often have the characteristic of amorphousness. One of the most promising classes of materials for those purposes seems to be the chalcogenide glasses. Chalcogenide glasses, based on the Ge-Sb-Se system, have drawn a great deal of attention because of their use in preparing optical lenses and transparent fibers in the range of 3~12 um. In this study, amorphous Ge-Sb-Se chalcogenide for application in an infrared optical product design and manufacture was prepared by a standard melt-quenching technique. The results of the structural, optical and surface roughness analysis of high purity Ge-Sb-Se chalcogenide glasses are reported after various annealing processes.

Infrared Light Absorbance: a New Method for Temperature Compensation in Nondispersive Infrared CO2 Gas Sensor

  • Yi, Seung Hwan
    • 센서학회지
    • /
    • 제29권5호
    • /
    • pp.303-311
    • /
    • 2020
  • Nondispersive infrared CO2 gas sensor was developed after the simulation of optical cavity structure and assembling the optical components: IR source, concave reflectors, Fresnel lens, a hollow disk, and IR detectors. By placing a hollow disk in front of reference IR detector, the output voltages are almost constant value, near to 70.2 mV. The absorbance of IR light, Fa, shows the second order of polynomial according to ambient temperatures at 1,500 ppm. The differential output voltages and the absorbance of IR light give a higher accuracy in estimations of CO2 concentrations with less than ± 1.5 % errors. After implementing the parameters that are dependent upon the ambient temperatures in microcontroller unit (MCU), the measured CO2 concentrations show high accuracies (less than ± 1.0 %) from 281 K to 308 K and the time constant of developed sensor is about 58 sec at 301 K. Even though the estimation errors are relatively high at low concentration, the developed sensor is competitive to the commercial product with a high accuracy and the stability.