• Title/Summary/Keyword: IR Light

Search Result 557, Processing Time 0.031 seconds

Large-size LCD with touch-sensing capability

  • Zhu, X.L.;Sit, Cass K.M.;Ma, Mark W.;Feng, Y.J.;Ng, K.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1519-1522
    • /
    • 2009
  • We describe a 32" liquid-crystal display (LCD) with multi-touch sensing capability by integrating IR detector arrays onto the LED backlight plate. A transparent light guide is placed in front of the display screen, with IR LEDs disposed at its edges and emitting IR light into the light guide, the light is trapped by total internal reflection within the light guide to be as touch-sensing light. A physical contact with the acrylic plate surface will stimulate some trapped light to be escaped from the light guide and pass through LCD panel to be detected by the IR detectors. The touch-sensing LCD with this configuration can locate simultaneous multiple touche points on the touchable surface.

  • PDF

Prototype Implementation of VLC Upstream Transmission Using Focused IR-LED (집광된 IR-LED를 이용한 가시광 통신 상향 전송 프로토타입 구현)

  • Jang, Yunseon;Choi, Kyungmook;Ju, MinChul;Park, Youngil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.9
    • /
    • pp.784-790
    • /
    • 2012
  • In this paper, we propose a upstream transmission method to extend coverage in visible light communication (VLC) systems. We extend transmission distance by using focused infrared(IR) light emitting diodes(LEDs). Since the focused light covers just limited area, it might have a difficulty in transmitting data if the transmitter and receiver are not properly aligned. To solve this problem, we arrange multiple IR-LEDs in different direction and select a single best performing IR-LED among multiple IR-LEDs. Also, the transmission performance is periodically checked and another IR-LED is reselected to support the required quality of service (QoS) and to minimize battery consumption required by a mobile terminal.

Localization System for Mobile Robot Using Electric Compass and Tracking IR Light Source (전자 나침반과 적외선 광원 추적을 이용한 이동로봇용 위치 인식 시스템)

  • Son, Chang-Woo;Lee, Seung-Heui;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.767-773
    • /
    • 2008
  • This paper presents a localization system based on the use of electric compass and tracking IR light source. Digital RGB(Red, Green, Blue)signal of digital CMOS Camera is sent to CPLD which converts the color image to binary image at 30 frames per second. CMOS camera has IR filter and UV filter in front of CMOS cell. The filters cut off above 720nm light source. Binary output data of CPLD is sent to DSP that rapidly tracks the IR light source by moving Camera tilt DC motor. At a robot toward north, electric compass signals and IR light source angles which are used for calculating the data of the location system. Because geomagnetic field is linear in local position, this location system is possible. Finally, it is shown that position error is within ${\pm}1.3cm$ in this system.

The study on the characteristics of organic light emitting devices using Ir (Ir 착화합물을 이용한 유기발광소자의 특성연구)

  • 김준호;표상우;정래영;하윤경;김영관;김정수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.214-217
    • /
    • 2002
  • The internal quantum efficiency of organic light emitting devices(OLEDs) using fluorescent organic materials is limited within 25% because of the triplet excitons which can hardly emit light. So there has been considerable interest in finding ways to obtain light emission from triplet excitons. One approach has been to add phosphorescent compounds to one of the layers in OLEDs. Then triplet excitons can transfer to these phosphorescent molecules and emit light. In this study, multilayer OLEDs with phosphorescent emitter, Iridium complexes were prepared. The devices with a structure of ITO/TPD/Ir complex doped in the host material/Alq3/Li:Al/Al were fabricated, and its electrical and optical characteristics were studied. Using various Ir complexes and the host materials, we fabricated several devices and investigated the device characteristics.

  • PDF

Study of White Polymer Electrophosphorescent Light-emitting Diode with Heteroleptic Ir-Complex

  • Lee, Jay-Woo;Kim, Eu-Gene
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.648-650
    • /
    • 2007
  • We demonstrate highly efficient White Polymer Electrophosphorescent Light-emitting Diode using newly developed green and red light emitting heteroleptic iridium complex, Ir-(pq)2tpy, and blue light emitting fluorescent dopant, BczVBi. The best luminous efficiency reached 28cd/A with maximum luminance of 87000cd/m2. The scheme for determining optimum device architecture and dopant concentrations were constructed.

  • PDF

Preparation and Characterization of White Phosphorescence Polymer Light Emitting Diodes Using PFO:Ir(ppy)3:MDMO-PPV Emission Layer

  • Park, Byung-Min;Chang, Ho-Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.4
    • /
    • pp.79-83
    • /
    • 2011
  • White phosphorescence polymer light emitting diodes (WPhPLEDs) with a glass/ITO/PEDOT:PSS/PFO:$Ir(ppy)_3$:MDMO-PPV/TPBI/LiF/Al structure were fabricated to investigate the effects of $Ir(ppy)_3$ doping concentrations on the optical and electrical properties of the devices. PFO, $Ir(ppy)_3$ and MDMO-PPV conjugated polymers as host and guest materials in the emission layer were spin coated at various concentrations of $Ir(ppy)_3$ ranging from 0.0 to 20.0 vol.%. As the concentration of $Ir(ppy)_3$ increased from 5.0 to 20.0 vol.%, the luminance and current efficiency values of the devices decreased clearly, which are attributable to the quenching effect at a high doping concentration. The maximum luminance and current density were 2850 $cd/m^2$ and 741 $mA/cm^2$, respectively for a WPhPLED with an $Ir(ppy)_3$ concentration of 5.0 vol.%. The CIE color coordinates were about x=0.33 and y=0.34 at 11V, showing a good white color.

Combination of Infrared Light Source and Barrier Filter for Suction Bruise Photography (음압에 의해 생성된 멍 촬영을 위한 적외선 광원과 필터 조합에 관한 연구)

  • Kim, Ju-Eun;Kim, Ji-Yeon;Jeon, So-Young;Kim, Eun-A;Yu, Je-Seol
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.11
    • /
    • pp.693-698
    • /
    • 2016
  • Bruise caused by damages through physical compression and suction is one of evidences that can prove abuse or assault. It is essential for taking photography to prove a crime. Some studies about the Infrared (IR) light source have limitations that only one IR light source and one barrier filter were used. To find the best combination of filters and IR light sources, we produced suction bruise artificially and used three IR light sources and five barrier filters. Consequently, we found that the best combination is using a tungsten lamp and Kodak Wratten #18A barrier filter.

Actionspectra for Circadian Melatonin Rhythms in the Avian Pineal In Vitro

  • Kondo, Chieko;Haldar, Chandana;Tamotsu, Satoshi;Oishi, Tadashi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.249-251
    • /
    • 2002
  • The avian pineal as well as the retina has been known to contain several types of photoreceptors with different visual pigments such as rhodopsin, iodopsin and the pineal specific opsin, pinopsin. These organs are also known to have circadian clock to regulate melatonin production. Exposure of animals to light causes a decline of the melatonin level and the phase shifts of melatonin rhythms in the pineal and retina. Therefore, the circadian clock system of these organs seem to consist of three elements, i.e., light input, oscillator and melatonin output systems. In birds, it was suggested that rhodopsin might be involved in the entrainment of pineal melatonin rhythms from the action spectrum experiment for controlling NAT activity rhythms. However, there are much more pinopsin-immunoreactive (Pino-IR) cells than rhodopsin (Rho-IR) and iodopsin (Iodo-IR) cells in the avian pineal. We found that Pino-IR cells appeared earlier embryonic stages than Rho-IR and Iodo-IR cells. So, we tried to identify the visual pigments involved in the circadian melatonin rhythms in the pineal and retina. Organ cultured pineals were exposed to monochromatic light to find out which opsin participates in regulation of melatonin rhythms. The action spectra showed a peak at 475nm, suggesting that pinopsin is the major photopigment to regulate melatonin production in birds.

  • PDF

Highly Efficient Phosphorescent White Organic Light-Emitting Devices with a Poly(N-vinylcarbazole) Host Layer

  • Kang, Min-Ki;Moon, Dae-Gyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.2
    • /
    • pp.80-83
    • /
    • 2011
  • We have fabricated phosphorescent white organic light-emitting devices (WOLEDs) with a spin-coated poly(Nvinylcarbazole) [PVK] host layer. Iridium(III) bis[(4,6-difluorophenyl)-pyridinato-N,$C^{2'}$]picolinate (FIrpic), tris(2-phenylpyridine)iridium(III) [$Ir(ppy)_3$], and tris(2-phenyl-1-quinoline)iridium(III) [$Ir(phq)_3$], were used as the blue, green, and red guest materials, respectively. The PVK was mixed with FIrpic, $Ir(ppy)_3$, and $Ir(phq)_3$ molecules in a chlorobenzene solution and spin-coated in order to prepare the emission layer; 3-(4-biphenylyl)-4-phenyl-5-(4-tertbutylphenyl)-1,2,4-triazole (TAZ) was used as an electron transport material. The resultant device structure was ITO/PVK:FIrpic:$Ir(ppy)_3:Ir(phq)_3$/TAZ/LiF/Al. The electroluminescence, efficiency, and electrical conduction characteristics of the WOLEDs based on the doped PVK host layer were investigated. The maximum current efficiency of the three wavelength WOLED with the doped PVK host was 19.2 cd/A.

Infrared Light Absorbance: a New Method for Temperature Compensation in Nondispersive Infrared CO2 Gas Sensor

  • Yi, Seung Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.303-311
    • /
    • 2020
  • Nondispersive infrared CO2 gas sensor was developed after the simulation of optical cavity structure and assembling the optical components: IR source, concave reflectors, Fresnel lens, a hollow disk, and IR detectors. By placing a hollow disk in front of reference IR detector, the output voltages are almost constant value, near to 70.2 mV. The absorbance of IR light, Fa, shows the second order of polynomial according to ambient temperatures at 1,500 ppm. The differential output voltages and the absorbance of IR light give a higher accuracy in estimations of CO2 concentrations with less than ± 1.5 % errors. After implementing the parameters that are dependent upon the ambient temperatures in microcontroller unit (MCU), the measured CO2 concentrations show high accuracies (less than ± 1.0 %) from 281 K to 308 K and the time constant of developed sensor is about 58 sec at 301 K. Even though the estimation errors are relatively high at low concentration, the developed sensor is competitive to the commercial product with a high accuracy and the stability.