• Title/Summary/Keyword: IR Infrared sensors

Search Result 91, Processing Time 0.022 seconds

Parking Management System using IR Sensor and Development of Tour Information Application (적외선 센서를 활용한 통합형 주차장 관리 시스템 및 관광 정보제공 어플리케이션 개발)

  • Kim, Jong-Min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.541-543
    • /
    • 2021
  • Recently, the number of cars owned in Jeju Island and the use of tourist rental cars have been increasing rapidly. Therefore, parking problems are getting worse in residential and commercial areas. As a result, a system is required to secure parking spaces and utilize existing parking spaces. Therefore, this paper proposes a system for real-time sharing of free public and paid parking spaces by introducing services that provide information on nearby restaurants, tourist information, and real-time parking status. The system analyzes infrared sensors and CCTV images installed in the actual parking lot and provides convenience for service users by analyzing the space currently in use and the number of unused parking spaces in real time.

  • PDF

Fixed Pattern Noise Reduction in Infrared Videos Based on Joint Correction of Gain and Offset (적외선 비디오에서 Gain과 Offset 결합 보정을 통한 고정패턴잡음 제거기법)

  • Kim, Seong-Min;Bae, Yoon-Sung;Jang, Jae-Ho;Ra, Jong-Beom
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.2
    • /
    • pp.35-44
    • /
    • 2012
  • Most recent infrared (IR) sensors have a focal-plane array (FPA) structure. Spatial non-uniformity of a FPA structure, however, introduces unwanted fixed pattern noise (FPN) to images. This non-uniformity correction (NUC) of a FPA can be categorized into target-based and scene-based approaches. In a target-based approach, FPN can be separated by using a uniform target such as a black body. Since the detector response randomly drifts along the time axis, however, several scene-based algorithms on the basis of a video sequence have been proposed. Among those algorithms, the state-of-the-art one based on Kalman filter uses one-directional warping for motion compensation and only compensates for offset non-uniformity of IR camera detectors. The system model using one-directional warping cannot correct the boundary region where a new scene is being introduced in the next video frame. Furthermore, offset-only correction approaches may not completely remove the FPN in images if it is considerably affected by gain non-uniformity. Therefore, for FPN reduction in IR videos, we propose a joint correction algorithm of gain and offset based on bi-directional warping. Experiment results using simulated and real IR videos show that the proposed scheme can provide better performance compared with the state-of-the art in FPN reduction.

ANALYSIS OF THE EFFECT OF HYDROXYL GROUPS IN SILICON DIRECT BONDING USING FT-IR (규소 기판 접합에 있어서 FT-IR을 이용한 수산화기의 영향에 관한 해석)

  • Park, Se-Kwang;Kwon, Ki-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.74-80
    • /
    • 1994
  • Silicon direct bonding technology is very attractive for both silicon-on-insulator devices and sensor fabrication because of its thermal stress free structure and stability. The process of SDB includes hydration of silicon wafer and heat treatment in a wet oxidation furnace. After hydration process, hydroxyl groups of silicon wafer were analyzed by using Fourier transformation-infrared spectroscopy. In case of hydrophilic treatment using a ($H_{2}O_{2}\;:\;H_{2}SO_{4}$) solution, hydroxyl groups are observed in a broad band around the 3474 $cm^{-1}$ region. However, hydroxyl groups do not appear in case of diluted HF solution. The bonded wafer was etched by using tetramethylammonium hydroxide etchant. The surface of the self etch-stopped silicon dioxide is completely flat, so that it can be used as sensor applications such as pressure, flow and acceleration, etc..

  • PDF

Domestic Environment Analysis for Building FTB Aircraft with AESA Radar (AESA Radar 탑재 FTB 항공기 구축을 위한 국내환경 분석)

  • Park, Jehong;Hong, Gyoyoung;Eom, Jeonghwan;Chong, Pilhan;Hong, Seungbeom
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.1
    • /
    • pp.9-15
    • /
    • 2020
  • Recently, active electronically scanned array (AESA) radar, electro-optical and infrared (EO-IR) and infra-red search and track (IRST) sensors are under development in the Korean fighter experimental(KF-X) project, and AESA radar is currently undergoing preliminary research for flight testing. This paper focuses on the flying test bed (FTB) aircraft operation cases of developed countries in accordance with AESA radar development. As a result, we review domestic laws and regulations related to the airworthiness for FTB aircraft to operate in domestic environment and look for ways to operate FTB aircraft. Therefore, we propose how to selecting, airworthiness and operating FTB aircraft suitable for the domestic environment.

Development of a Real Time Three-Dimensional Motion Capture System by Using Single PSD Unit (단일 PSD를 이용한 실시간 3차원 모션캡쳐 시스템 개발)

  • Jo, Yong-Jun;Oh, Choon-Suk;Ryu, Young-Kee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.11
    • /
    • pp.1074-1080
    • /
    • 2006
  • Motion capture systems are gaining popularity in entertainment, medicine, sports, education, and industry, with animation and gaming applications for entertainment taking the lead. A wide variety of systems are available for motion capture, but most of them are complicated and expensive. In the general class of optical motion capture, two or more optical sensors are needed to measure the 3D positions of the markers attached to the body. Recently, a 3D motion capture system using two Position Sensitive Detector (PSD) optical sensors was introduced to capture high-speed motion of an active infrared LED marker. The PSD-based system, however, is limited by a geometric calibration procedure for two PSD sensor modules that is too difficult for common customers. In this research, we have introduced a new system that used a single PSD sensor unit to obtain 3D positions of active IR LED-based markers. This new system is easy to calibrate and inexpensive.

Detection of Precise Crop Locations under Vinyl Mulch using Non-integral Moving Average Applied to Thermal Distribution

  • Cho, Yongjin;Yun, Yeji;Lee, Kyou-Seung;Lee, Dong-Hoon
    • Journal of Biosystems Engineering
    • /
    • v.42 no.2
    • /
    • pp.117-125
    • /
    • 2017
  • Purpose: Damage to pulse crops by wild birds is a serious problem. The damage is to such an extent that the rate of damage during the period between seeding and cotyledon stages reaches 54.6% on an average. In this study, a crop-position detection method was developed wherein infrared (IR) sensors were used to determine the cotyledon position under a vinyl mulch. Methods: IR sensors that helped measure the temperature were used to locate the cotyledons below the vinyl mulch. A single IR sensor module was installed at three locations of the crops (peanut, red lettuce, and crown daisy) in the cotyledon stage. The representative thermal response of a $16{\times}4$ pixel area was detected using this sensor in the case where the distance from the target was 25 cm. A spatial image was applied to the two-dimensional temperature distribution using a non-integral moving-average method. The collected data were first processed by taking the moving average via interpolation to determine the frame where the variance was the lowest for a resolution unit of 1.02 cm. Results: The temperature distribution was plotted corresponding to a distance of 10 cm between the crops. A clear leaf pattern of the crop was visually confirmed. However, the temperature distribution after the normalization was unclear. The image conversion and frequency-conversion graphs were obtained based on the moving average by averaging the points corresponding to a frequency of 40 Hz for 8 pixels. The most optimized resolutions at locations 1, 2, and 3 were found on 3.4, 4.1, and 5.6 Pixels, respectively. Conclusions: In this study, to solve the problem of damage caused by birds to crops in the cotyledon stage after seeding, the vinyl mulch is punched after seeding. The crops in the cotyledon stage could be accurately located using the proposed method. By conducting the experiments using the single IR sensor and a sliding mechanical device with the help of a non-integral interpolation method, the crops in the cotyledon stage could be precisely located.

Characteristics of c-axis oriented PLT thin films and their application to IR sensor (c-축 배양된 PLT 박막의 특성 및 IR센서 응용)

  • Choi, B.J.;Park, J.H.;Kim, Y.J.;Kim, K.W.
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.87-92
    • /
    • 1996
  • The PLT thin films on (100) cleaved MgO single crystal substrate have been fabricated by rf magnetron sputtering using a PbO-rich target. The dependence of physical and electrical properties on the degree of c-axis orientation has been studied. The degree of c-axis orientation of PLT thin films depends on fabrication conditions. Fabrication conditions of the PLT thin films were such that substrate temperature, working pressure, gas ratio of $Ar/O_{2}$, and rf power density were $640^{\circ}C$, 10 mTorr, 10 seem, and $1.7\;W/cm^{2}$, respectively. In these conditions, the PLT thin film showed the Pb/Ti ratio of 1/2 at the surface, the resistivity of $8{\times}10^{11}{\Omega}{\cdot}cm$, and dielectric constant of 110. The pyroelectric infrared sensors with these PLT thin films showed the peak to peak voltage of 450 m V and signal to noise ratio of 7.2.

  • PDF

The Obstacle Size Prediction Method Based on YOLO and IR Sensor for Avoiding Obstacle Collision of Small UAVs (소형 UAV의 장애물 충돌 회피를 위한 YOLO 및 IR 센서 기반 장애물 크기 예측 방법)

  • Uicheon Lee;Jongwon Lee;Euijin Choi;Seonah Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.16-26
    • /
    • 2023
  • With the growing demand for unmanned aerial vehicles (UAVs), various collision avoidance methods have been proposed, mainly using LiDAR and stereo cameras. However, it is difficult to apply these sensors to small UAVs due to heavy weight or lack of space. The recently proposed methods use a combination of object recognition models and distance sensors, but they lack information on the obstacle size. This disadvantage makes distance determination and obstacle coordination complicated in an early-stage collision avoidance. We propose a method for estimating obstacle sizes using a monocular camera-YOLO and infrared sensor. Our experimental results confirmed that the accuracy was 86.39% within the distance of 40 cm. In addition, the proposed method was applied to a small UAV to confirm whether it was possible to avoid obstacle collisions.

Electrical response of tungsten diselenide to the adsorption of trinitrotoluene molecules (폭발물 감지 시스템 개발을 위한 TNT 분자 흡착에 대한 WSe2 소자의 전기적 반응 특성 평가)

  • Chan Hwi Kim;Suyeon Cho;Hyeongtae Kim;Won Joo Lee;Jun Hong Park
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.255-260
    • /
    • 2023
  • As demanding the detection of explosive molecules, it is required to develop rapidly and precisely responsive sensors with ultra-high sensitivity. Since two-dimensional semiconductors have an atomically thin body nature where mobile carriers accumulate, the abrupt modulation carrier in the thin body channel can be expected. To investigate the effectiveness of WSe2 semiconductor materials as a detection material for TNT (Trinitrotoluene) explosives, WSe2 was synthesized using thermal chemical vapor deposition, and afterward, WSe2 FETs (Field Effect Transistors) were fabricated using standard photo-lithograph processes. Raman Spectrum and FT-IR (Fourier-transform infrared) spectroscopy reveal that the adsorption of TNT molecules induces the structural transition of WSe2 crystalline. The electrical properties before and after adsorption of TNT molecules on the WSe2 surface were compared; as -50 V was applied as the back gate bias, 0.02 μA was recorded in the bare state, and the drain current increased to 0.41 μA with a dropping 0.6% (w/v) TNT while maintaining the p-type behavior. Afterward, the electrical characteristics were additionally evaluated by comparing the carrier mobility, hysteresis, and on/off ratio. Consequently, the present report provides the milestone for developing ultra-sensitive sensors with rapid response and high precision.

Optimization of Mesoscale Atmospheric Motion Vector Algorithm Using Geostationary Meteorological Satellite Data (정지기상위성자료를 이용한 중규모 바람장 산출 알고리즘 최적화)

  • Kim, Somyoung;Park, Jeong-Hyun;Ou, Mi-Lim;Cho, Heeje;Sohn, Eun-Ha
    • Atmosphere
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • The Atmospheric motion vectors (AMVs) derived using infrared (IR) channel imagery of geostationary satellites have been utilized widely for real-time weather analysis and data assimilation into global numerical prediction model. As the horizontal resolution of sensors on-board satellites gets higher, it becomes possible to identify atmospheric motions induced by convective clouds ($meso-{\beta}$ and $meso-{\gamma}$ scales). The National Institute of Meteorological Research (NIMR) developed the high resolution visible (HRV) AMV algorithm to detect mesoscale atmospheric motions including ageostrophic flows. To retrieve atmospheric motions smaller than $meso-{\beta}$ scale effectively, the target size is reduced and the visible channel imagery of geostationary satellite with 1 km resolution is used. For the accurate AMVs, optimal conditions are decided by investigating sensitivity of algorithm to target selection and correction method of height assignment. The results show that the optimal conditions are target size of 32 km ${\times}$ 32 km, the grid interval as same as target size, and the optimal target selection method. The HRV AMVs derived with these conditions depict more effectively tropical cyclone OMAIS than IR AMVs and the mean speed of HRV AMVs in OMAIS is slightly faster than that of IR AMVs. Optimized mesoscale AMVs are derived for 6 months (Feb. 2010-Jun. 2010) and validated with radiosonde observations, which indicates NIMR's HRV AMV algorithm can retrieve successfully mesoscale atmospheric motions.