• Title/Summary/Keyword: IPMSM design method

Search Result 86, Processing Time 0.023 seconds

Multiobjective Optimal Double-Layer PM Rotor Structure Design of IPMSM by Response Surface Method and Finite Element Method (반응표면법을 이용한 매입형 영구자석 동기전동기의 이층 영구자석 회전자 구조 다목적 최적 설계)

  • Choi, Gil-Sun;Hahn, Sung-Chin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.123-130
    • /
    • 2010
  • In general, a design method based on the equivalent magnetic circuit has been used for basic design of Interior Permanent Magnet Synchronous Motor(IPMSM). However, the equivalent magnetic circuit method has difficulty in considering the arrangement of PM. IPMSM has high degree of freedom for PM rotor design. In this paper, we proposed the multiobjective optimal design method considering the arrangement of PM for the double-layer PM rotor structure that minimizes the torque ripple as well as maximizes the torque of IPMSM. The design variables of double-layer PM rotor structure are obtained from the Response Surface Method. Torque and torque ripple were calculated by Finite Element Method.

Thermal Analysis of IPMSM with Water Cooling Jacket for Railway Vehicles

  • Park, Chan-Bae
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.882-887
    • /
    • 2014
  • In this paper, the water cooling method among the forced coolant cooling methods is considered to be applied to the 110kW-class IPMSM for railway vehicles. First, basic thermal property analysis of the IPMSM is conducted using the three-dimensional thermal equivalent network method. Then, based on the results of the basic thermal property analysis, some design requirements for the water cooling jacket are deduced and a basic design of the water cooling jacket is carried out. Finally, thermal equivalent circuit of the water cooling jacket is attached to the IPMSM's 3D thermal equivalent network and then, the basic thermal and effectiveness analysis are conducted for the case of applying the water cooling jacket to the IPMSM. In the future, the thermal variation trends inside the IPMSM by the application of the water cooling jacket is expected to be quickly and easily predicted even at the design step of the railway traction motor.

A Design Method of 2D Look-up Table of IPMSM for Electric Vehicle (전기자동차 구동용 IPMSM의 2D Look-up Table 작성기법)

  • Won, Il-Kwon;Kim, Do-Yun;Ko, An-Yeol;Lee, Jung-Hyo;Kim, Young-Real;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.104-105
    • /
    • 2013
  • When actual IPMSM is driving, it is difficult to figure out the correct current during the current control period due to the operation speed limit of digital signal processing. Therefore, in order to control IPMSM for electric vehicle efficiently, we should design 2D Look-up Table to find out optimal current reference corresponding to speed and torque of IPMSM. This paper explains the design method of 2D Look-up Table for optimal current control of constant torque area and constant output area of IPMSM for electric vehicle. Finally, experimental results are presented to verify the reliability of 2D Look-up Table.

  • PDF

IPMSM Design for Sensorless Control Considering Magnetic Neutral Point Shift According to Magnetic Saturation

  • Choi, JaeWan;Seol, Hyun-Soo;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.752-760
    • /
    • 2018
  • In this paper, interior permanent magnet synchronous motor (IPMSM) design for sensorless drive, considering magnetic neutral point shift according to magnetic saturation, has been proposed. Sensorless control was divided into a method based on inductance and a method based on back induced voltage. Because induced voltage is very small at zero or low speed, error in rotor initial position estimation may occur. Using the ratio of saliency addresses this problem. When using high-frequency injections at low speed, the rotor's initial position is estimated at the smallest portion of the inductance. IPMSM has the minimum inductance at the d-axis. However, if magnetic saturation leads to magnetic neutral point variation, following the load current change, there is a change in the minimum point of inductance. In this case, it can lead to failure of initial rotor position estimation. As a result, it is essential that the blocking design has an inductance minimum point shift. As such, in this study, an IPMSM design method, by blocking magnetic neutral point change, has been proposed. After determining the inductance profile based on the finite element analysis (FEA), the results of proposed method were verified.

A Study on the Water-cooling Jacket Design of IPMSM for Railway Vehicles (철도차량용 IPMSM의 Water-cooling Jacket 설계 연구)

  • Park, Chan-Bae;Lee, Jun-Ho;Lee, Byung-Song
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1475-1480
    • /
    • 2013
  • In this paper, the basic design study of a water-cooling jacket, which have reported no cases for applying to railway traction motors so far, were conducted for applying to Interior Permanent Magnet Synchronous Motor (IPMSM) for railway vehicles. The basic thermal characteristics analysis of the 110kW-class IPMSM was performed by using 3-dimentional thermal equivalent network method. The necessary design requirements of the water-cooling jacket were derived by analyzing the results of the basic thermal properties. Next, the thermal characteristics analysis technique was established by using the equivalent model of the solenoid-typed pipe to be installed on the inside of the water-cooling jacket for 110kW-class IPMSM. Finally, a design model of 6kW-class water-cooling jacket was derived through the analysis of various design parameters.

Sliding Mode Observer for Sensorless Control of IPMSM Drives

  • Jung, Young-Seok;Kim, Marn-Go
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.117-123
    • /
    • 2009
  • This paper presents a sliding mode observer for the sensorless control of interior permanent magnet synchronous motor (IPMSM) drives. The sliding mode observer has been presented as a robust estimation method. Most of these previous works, however, were not for an interior PMSM (IPMSM), but for a non-salient pole PMSM and its observer design is conducted in the stationary reference frame. Thus, in this paper, we investigate the design of a sliding mode observer and its driving characteristics for an IPMSM. The proposed sliding mode observer is designed in the rotating reference frame, and good drive performance is achieved even when the observer parameters are mismatched with those of an actual motor. The proposed method is applied to a 600W IPMSM, and, then, the measurement results are presented.

A Study on Optimal Pole Design of Spoke type IPMSM with Concentrated Winding for Reducing the Torque Ripple by Experiment Design Method (실험계획법을 이용한 집중권 권선형 Spoke type IPMSM의 형상최적설계에 대한 연구)

  • Hwang, K.Y.;Kwon, B.I.
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.46-49
    • /
    • 2009
  • An optimal design procedure is proposed to effectively reduce the torque ripple by optimizing the rotor pole shape of the spoke type IPMSM with concentrated winding. The procedure is composed of two steps. In step I, the steepest descent method (SDM) is used with only two design variables to rapidly approach the optimal shape. From the near optimal rotor shape as a result of the step I, the design variables are reselected and the drawing spline curves are utilized to explain more complex shape with the Kriging model in step II. By using an optimal design procedure, we show that the optimized rotor pole shape of the spoke type IPMSM effectively reduces the torque ripple while still maintaining the average torque.

  • PDF

A Study of Design for Interior Permanent Magnet Synchronous Motor by using d-q Axis Equivalent Circuit Method (d-q축 등가회로 해석기법을 이용한 180 W급 IPMSM 설계에 관한 연구)

  • Kim, Young-Kyoun
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.2
    • /
    • pp.54-62
    • /
    • 2017
  • This paper presents a design of the Interior Permanent Magnet Synchronous Motor (IPMSM). an initial design process is accomplished by using the parametric design. In the design process, motor characteristics of parameters is computed by the d-q axis equivalent circuit model. Then, an optimal design process is accomplished by combination the experimental design and the response surface method. Finally, the design and analysis results are verified with experimental results.

Improvement of efficiency in Multi-layer IPMSM using Response Surface Methodology (반응 표면법을 이용한 Multi-layer 매입형 영구자석 동기정동기의 효율 향상)

  • Fang, Liang;Kwon, Soon-O;Lee, Sang-Ho;Zhang, Peng;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.777-778
    • /
    • 2006
  • This paper deals with the optimum rotor design approach about the multi-layer design of the buried magnets in an Interior Permanent Magnet Synchronous Motor (IPMSM), on the efficiency improvement by using Response Surface Methodology (RSM). In the multi-layer design of the prototype 15kw IPMSM, the constant amount of buried PM is split from the single-layer into double-layer design for improving the efficiency characteristics. The optimum double-layer rotor structure is built with the help of RSM analysis. The improvement of IPMSM efficiency is verified by the Finite Element Method (FEM) results comparison with the prototype single-layer IPMSM.

  • PDF

Design of the Current and Speed Controller for the IPMSM based High Speed Railway Traction System (IPMSM이 적용된 차세대 고속철도 견인시스템의 전류 및 속도 제어기 설계)

  • Yi, Du-Hee;Jin, Kang-Hwan;Kwon, Soon-Hwan;Kim, Sung-Je;Kim, Yoon-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.8
    • /
    • pp.70-77
    • /
    • 2010
  • This paper presents the current and speed controller design procedure and their performance for the IPMSM based next generation high speed railway traction system. The next generation high speed railway system is a power distributed type and uses vector control method for a motor speed control. Since the speed and current controller gains of the vector control system directly affects to the transient characteristics and speed control capability, the systematic design of the controllers are required. In this paper the controllers are designed using the IPMSM based next generation high speed railway system parameters. Simulation programs based on Matlab/Simulink is developed. Finally the controller characteristics are analyzed by the simulation results.