• 제목/요약/키워드: IPMSM design method

검색결과 86건 처리시간 0.03초

반응표면법을 이용한 매입형 영구자석 동기전동기의 이층 영구자석 회전자 구조 다목적 최적 설계 (Multiobjective Optimal Double-Layer PM Rotor Structure Design of IPMSM by Response Surface Method and Finite Element Method)

  • 최길선;한성진
    • 조명전기설비학회논문지
    • /
    • 제24권6호
    • /
    • pp.123-130
    • /
    • 2010
  • 일반적으로 매입형 영구자석 동기전동기(IPMSM)의 초기설계는 자기등가회로법을 이용한다. IPMSM의 경우 회전자에 매입된 영구자석 배치의 자유도가 매우 높지만 자기등가회로법은 영구자석의 배치를 고려하기 어렵다. 따라서 설계변수와 응답에 대한 관측 자료로부터 해석적인 근사모형을 제시함으로써 실질적인 목적함수를 쉽게 만들 수 있는 반응표면법(RSM)을 활용하였으며 조건에 따른 관계를 예측하기 위해 필요한 실험 데이터는 유한요소법을 이용하였다. 본 논문에서는 IPMSM의 고 토크와 저 토크 리플을 위한 반응 표면법을 이용한 매입형 영구자석 동기전동기의 이층 영구자석 회전자 구조 다목적 최적 설계를 제안한다.

Thermal Analysis of IPMSM with Water Cooling Jacket for Railway Vehicles

  • Park, Chan-Bae
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.882-887
    • /
    • 2014
  • In this paper, the water cooling method among the forced coolant cooling methods is considered to be applied to the 110kW-class IPMSM for railway vehicles. First, basic thermal property analysis of the IPMSM is conducted using the three-dimensional thermal equivalent network method. Then, based on the results of the basic thermal property analysis, some design requirements for the water cooling jacket are deduced and a basic design of the water cooling jacket is carried out. Finally, thermal equivalent circuit of the water cooling jacket is attached to the IPMSM's 3D thermal equivalent network and then, the basic thermal and effectiveness analysis are conducted for the case of applying the water cooling jacket to the IPMSM. In the future, the thermal variation trends inside the IPMSM by the application of the water cooling jacket is expected to be quickly and easily predicted even at the design step of the railway traction motor.

전기자동차 구동용 IPMSM의 2D Look-up Table 작성기법 (A Design Method of 2D Look-up Table of IPMSM for Electric Vehicle)

  • 원일권;김도윤;고안열;이정효;김영렬;원충연
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2013년도 전력전자학술대회 논문집
    • /
    • pp.104-105
    • /
    • 2013
  • When actual IPMSM is driving, it is difficult to figure out the correct current during the current control period due to the operation speed limit of digital signal processing. Therefore, in order to control IPMSM for electric vehicle efficiently, we should design 2D Look-up Table to find out optimal current reference corresponding to speed and torque of IPMSM. This paper explains the design method of 2D Look-up Table for optimal current control of constant torque area and constant output area of IPMSM for electric vehicle. Finally, experimental results are presented to verify the reliability of 2D Look-up Table.

  • PDF

IPMSM Design for Sensorless Control Considering Magnetic Neutral Point Shift According to Magnetic Saturation

  • Choi, JaeWan;Seol, Hyun-Soo;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.752-760
    • /
    • 2018
  • In this paper, interior permanent magnet synchronous motor (IPMSM) design for sensorless drive, considering magnetic neutral point shift according to magnetic saturation, has been proposed. Sensorless control was divided into a method based on inductance and a method based on back induced voltage. Because induced voltage is very small at zero or low speed, error in rotor initial position estimation may occur. Using the ratio of saliency addresses this problem. When using high-frequency injections at low speed, the rotor's initial position is estimated at the smallest portion of the inductance. IPMSM has the minimum inductance at the d-axis. However, if magnetic saturation leads to magnetic neutral point variation, following the load current change, there is a change in the minimum point of inductance. In this case, it can lead to failure of initial rotor position estimation. As a result, it is essential that the blocking design has an inductance minimum point shift. As such, in this study, an IPMSM design method, by blocking magnetic neutral point change, has been proposed. After determining the inductance profile based on the finite element analysis (FEA), the results of proposed method were verified.

철도차량용 IPMSM의 Water-cooling Jacket 설계 연구 (A Study on the Water-cooling Jacket Design of IPMSM for Railway Vehicles)

  • 박찬배;이준호;이병송
    • 전기학회논문지
    • /
    • 제62권10호
    • /
    • pp.1475-1480
    • /
    • 2013
  • In this paper, the basic design study of a water-cooling jacket, which have reported no cases for applying to railway traction motors so far, were conducted for applying to Interior Permanent Magnet Synchronous Motor (IPMSM) for railway vehicles. The basic thermal characteristics analysis of the 110kW-class IPMSM was performed by using 3-dimentional thermal equivalent network method. The necessary design requirements of the water-cooling jacket were derived by analyzing the results of the basic thermal properties. Next, the thermal characteristics analysis technique was established by using the equivalent model of the solenoid-typed pipe to be installed on the inside of the water-cooling jacket for 110kW-class IPMSM. Finally, a design model of 6kW-class water-cooling jacket was derived through the analysis of various design parameters.

Sliding Mode Observer for Sensorless Control of IPMSM Drives

  • Jung, Young-Seok;Kim, Marn-Go
    • Journal of Power Electronics
    • /
    • 제9권1호
    • /
    • pp.117-123
    • /
    • 2009
  • This paper presents a sliding mode observer for the sensorless control of interior permanent magnet synchronous motor (IPMSM) drives. The sliding mode observer has been presented as a robust estimation method. Most of these previous works, however, were not for an interior PMSM (IPMSM), but for a non-salient pole PMSM and its observer design is conducted in the stationary reference frame. Thus, in this paper, we investigate the design of a sliding mode observer and its driving characteristics for an IPMSM. The proposed sliding mode observer is designed in the rotating reference frame, and good drive performance is achieved even when the observer parameters are mismatched with those of an actual motor. The proposed method is applied to a 600W IPMSM, and, then, the measurement results are presented.

실험계획법을 이용한 집중권 권선형 Spoke type IPMSM의 형상최적설계에 대한 연구 (A Study on Optimal Pole Design of Spoke type IPMSM with Concentrated Winding for Reducing the Torque Ripple by Experiment Design Method)

  • 황규윤;권병일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 에너지변화시스템부문
    • /
    • pp.46-49
    • /
    • 2009
  • An optimal design procedure is proposed to effectively reduce the torque ripple by optimizing the rotor pole shape of the spoke type IPMSM with concentrated winding. The procedure is composed of two steps. In step I, the steepest descent method (SDM) is used with only two design variables to rapidly approach the optimal shape. From the near optimal rotor shape as a result of the step I, the design variables are reselected and the drawing spline curves are utilized to explain more complex shape with the Kriging model in step II. By using an optimal design procedure, we show that the optimized rotor pole shape of the spoke type IPMSM effectively reduces the torque ripple while still maintaining the average torque.

  • PDF

d-q축 등가회로 해석기법을 이용한 180 W급 IPMSM 설계에 관한 연구 (A Study of Design for Interior Permanent Magnet Synchronous Motor by using d-q Axis Equivalent Circuit Method)

  • 김영균
    • 한국자기학회지
    • /
    • 제27권2호
    • /
    • pp.54-62
    • /
    • 2017
  • 본 논문은 압축기 구동용 180 W급 매입형 영구자석 동기 전동기의 설계에 관하여 기술하였다. 먼저 전동기의 초기설계는 d-q 등가회로 모델을 이용한 해석기법을 이용하여 전동기 파라메타범위를 선정하고 이를 만족하는 초기형상을 도출하였다. 그리고, 전동기의 토크 리플을 저감하기 위해서 최적설계를 수행하였다. 최적설계는 실험계획법과 반응표면법을 이용하였으며, 끝으로 설계결과에 대한 타당성은 실험을 통해서 검증하였다.

반응 표면법을 이용한 Multi-layer 매입형 영구자석 동기정동기의 효율 향상 (Improvement of efficiency in Multi-layer IPMSM using Response Surface Methodology)

  • 방량;권순오;이상호;장붕;홍정표
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.777-778
    • /
    • 2006
  • This paper deals with the optimum rotor design approach about the multi-layer design of the buried magnets in an Interior Permanent Magnet Synchronous Motor (IPMSM), on the efficiency improvement by using Response Surface Methodology (RSM). In the multi-layer design of the prototype 15kw IPMSM, the constant amount of buried PM is split from the single-layer into double-layer design for improving the efficiency characteristics. The optimum double-layer rotor structure is built with the help of RSM analysis. The improvement of IPMSM efficiency is verified by the Finite Element Method (FEM) results comparison with the prototype single-layer IPMSM.

  • PDF

IPMSM이 적용된 차세대 고속철도 견인시스템의 전류 및 속도 제어기 설계 (Design of the Current and Speed Controller for the IPMSM based High Speed Railway Traction System)

  • 이두희;진강환;권순환;김성제;김윤호
    • 조명전기설비학회논문지
    • /
    • 제24권8호
    • /
    • pp.70-77
    • /
    • 2010
  • 본 논문에서는 차세대 고속철도에 적용하기 위한 IPMSM 견인시스템의 전류 및 속도제어기를 설계한다. 차세대 고속철도는 동력분산식 시스템으로 개발되며 고효율화를 위해 IPMSM 적용 견인전동기를 사용하였고 전동기 제어를 위해 벡터제어 기법을 사용한다. 이 때 벡터제어 루프내 제어기 이득 값은 IPMSM의 과도특성과 속도제어 능력에 영향을 미치기 때문에 알맞은 이득 설계가 요구된다. 본 논문에서는 IPMSM 적용 차세대 고속철도용 견인전동기의 제어기를 설계하여 Matlab/Simulink 기반 모의시험 프로그램을 개발하고 이를 이용한 시험 결과를 분석하였다.