• Title/Summary/Keyword: IPLAN

Search Result 26, Processing Time 0.02 seconds

UPFC Model for Stability Study Considering the Controller Rating (UPFC 설비용량을 고려한 안정도 해석 모형)

  • Kim, H.M.;Kook, K.S.;Jeon, J.H.;Lee, Y.W.;Oh, T.K.;Jang, B.H.;Chu, J.B.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.269-272
    • /
    • 1998
  • This paper presents an UPFC(Unified Power Flow Controlled model that considered rating for stability study. The proposed UPFC model was implemented by PSS/E and IPLAN. As a control strategy for damping electromechnical oscillations, energy function method was adopted. By the adopted control law, the damping effect is robust with respect to loading condition, fault location and network structure. The effect of control of the UPFC model was demonstrated on a one machine infinite bus system.

  • PDF

A Comparative Study on the Bus Voltage Control Effect of STATCOM and UPFC in Power Flow Analysis of Power Systems (전력계통의 조류해석에서 STATCOM과 UPFC의 모선전압 제어효과에 대한 비교연구)

  • 김덕영;국경수
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.5
    • /
    • pp.41-45
    • /
    • 2001
  • This paper presents an comparative study on the effect of STATCOM and UPFC to power flow analysis of power systems. The effect of STATCOM can be analyzed with PSS/E program which is generally used in power system analysis, while UPFC model for power flow analysis is not provided yet. Thus, UPFC is equivalently represented as a synchronous condenser and load, while the active and reactive power of the specific transmission line and the voltage of the bus is controlled appropriately. This procedure is implemented by IPLAN which is an external macro program of PSS/E. The simulation results show that UPFC is more effective to control the bus voltage than STATCOM, because UPFC can control not only the bus voltage where the parallel inverter is installed but also the active and reactive power flow in the transmission line where the series inverter is installed.

  • PDF

Effects of HTS Cable Applied to the Voltage Stability Limited Power System (전압 안정도 제약계통에 대한 고온초전도 케이블 적용효과)

  • Lee, Geun-Joon;Hwang, Si-Dol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.169-173
    • /
    • 2004
  • This paper presents the basic application idea of superconductor cable for voltage stability limited power system. In bulk power system, the transfer capability of transmission line is often limited by the voltage stability, and superconductor cable could be one of the countermeasure to enhance heat transfer limit as well as voltage stability limit. Steady state voltage stability approach by P-V curve is used to calculate the maximum transfer capability of initial system and superconductor applied system. IEEE-14 bus system is used to demonstrate its applicability.

A Comparative Study on the Effect of STATCOM and UPFC in the Static Analysis of Power Systems (전력계통의 정태해석에 미치는 STATCOM과 UPFC의 영향에 대한 비교 연구)

  • Kim, Deok-Young;Lee, Ji-Yeol;Kook, Kyung-Soo;Rho, Dae-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.214-216
    • /
    • 2000
  • This paper presents an comparative study on the effect of STATCOM and UPFC to the power system static analysis. The effect of STATCOM can be analyzed with PSS/E program which is generally used in power system analysis, while UPFC model for static analysis is not provided yet. Thus, UPFC is equivalently represented as a synchronous condenser and load, while the active and reactive power of the specific transmission line and the voltage of the bus is controlled appropriately. This procedure is implemented by IPLAN which is an external macro program of PSS/E. The simulation results show that UPFC is more effective to control the bus voltage than STATCOM, because UPFC can control not only the bus voltage where the parallel inverter is installed but also the active and reactive power flow in the transmission line where the series inverter is installed.

  • PDF

A Comparative Study on the Effect of SSSC and UPFC in Static Analysis of Power Systems (전력계통의 정태해석에 미치는 SSSC와 UPFC의 영향에 대한 비교 연구)

  • Kim, Deok-Young;Cho, Eon-Jung;Lee, Kun-Jae;Lee, Ji-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.155-157
    • /
    • 2001
  • This paper presents an comparative study on the effect of SSSC and UPFC to the power system static analysis. SSSC is used to control active power flow in transmission lines by controlling the phase angle of the injected voltage source which is in rectangular to the line current. UPFC is used to control the magnitude and phase of the injected voltage sources which are connected both in series and in parallel with the transmission line to control power flow and bus voltage. To compare the effect of SSSC and UPFC in power system static analysis, the PSS/E simulation program is used. As the FACTS device model such as SSSC and UPFC is not provided in PSS/E yet, an equivalent load model is used. This procedure is implemented by IPLAN which is an external macro program of PSS/E. The simulation results show that UPFC is more effective to improve bus voltage than SSSC in power system static analysis.

  • PDF

Calculation of Active Power Transfer Capability using Repeated Power Flow Program

  • Ham, Jung-Pil;Kim, Jung-Hoon;Lee, Byung-Ha;Won, Jong-Ryul
    • KIEE International Transactions on Power Engineering
    • /
    • v.12A no.1
    • /
    • pp.15-19
    • /
    • 2002
  • The power transfer capability is determined by the thermal, dynamic stability and voltage limits of the generation and transmission systems. The voltage stability depends on the reactive power limit and it affects the power transfer capability to a great extent. Then, in most load flow analysis, the reactive power limit is assumed as fixed, relatively different from the actual case. This paper proposes a method for determining the power transfer capability from a static voltage stability point of view using the IPLAN which is a high level language used with PSS/E program. The f-V curve for determining the power transfer capability is determined using Repeated Power Flow method. It Is assumed that the loads are constant and the generation powers change according to the merit order. The maximum reactive power limits are considered as varying similarly with the actual case and the effects of the varied maximum reactive power limits to the maximum power transfer capability are analyzed using a 5-bus power system and a 19-bus practical power system.