• Title/Summary/Keyword: IPCC SRES scenarios

Search Result 42, Processing Time 0.024 seconds

Impact of climate change scenarios in the Building Sector (기후변화 시나리오에 따른 건물부분의 영향)

  • Lee, Kwan-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.64-69
    • /
    • 2013
  • According to the Fourth Assessment Report of Intergovernmental Panel on Climate Change(IPCC) Working Group III, climate change is already in progress around the world, and it is necessary to execute mitigation in order to minimize adverse impacts. This paper suggests future climate change needs, employing IPCC Special Report on Emissions Scenarios(SRES) to predict temperature rises over the next 100 years. This information can be used to develop sustainable architecture applications for energy efficient buildings and renewable energy. Such climate changes could also affected the present supplies of renewable energy sources. This paper discusses one recent Fourth Assessment Report of IPCC (Mitigation of Climate Change) and the Hadley Centre climate simulation of relevant data series for South Korea. Result of this research may improve consistency and reliability of simulation weather data or climate change in order to take advantage of SRES and PRECIS QUMP. It is expected that these calculated test reference years will be useful to the designers of solar energy systems, as well as those who need daily solar radiation data for South Korea. Also, those results may contribute zero carbon and design of sustainable architecture establishing future typical weather data that should be gone ahead to energy efficient building design using renewable energy systems.

The expectation of future climate change in relation to buildings and renewable energy (건물 및 재생에너지에 관한 미래의 기후변화 예측)

  • Lee, Kwan-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.1
    • /
    • pp.57-64
    • /
    • 2008
  • According to the Fourth Assessment Report of Intergovernmental Panel on Climate Change(IPCC) Working Group III, climate change is already in progress around the world, and it is necessary to execute mitigation in order to minimize adverse impacts. This paper suggests future climate change needs, employing IPCC Special Report on Emissions Scenarios(SRES) to predict temperature rises over the next 100 years. This information can be used to develop sustainable architecture applications for energy efficient buildings and renewable energy. Such climate changes could also affected the resent supplies of renewable energy sources. This paper discusses one recent Fourth Assessment Report of IPPC (Mitigation of Climate Change) and the Hadley Centre climate simulation of relevant data series for South Korea.

An Uncertainty Assessment of AOGCM and Future Projection over East Asia (동아시아 지역의 AOGCM 불확실성 평가 및 미래기후전망)

  • Kim, Min-Ji;Shin, Jin-Ho;Lee, Hyo-Shin;Kwon, Won-Tae
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.507-524
    • /
    • 2008
  • In this paper, future climate changes over East Asia($20^{\circ}{\sim}50^{\circ}N$, $100^{\circ}{\sim}150^{\circ}E$) are projected by anthropogenic forcing of greenhouse gases and aerosols using coupled atmosphere-ocean general circulation model (AOGCM) simulations based on Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) B1, A1B and A2 scenarios. Before projection future climate, model performance is assessed by the $20^{th}$ Century (20C3M) experiment with bias, root Mean Square Error (RMSE), ratio of standard deviation, Taylor diagram analysis. The result of examination of the seasonal uncertainty of T2m and PCP shows that cold bias, lowered than that of observation, of T2m and wet bias, larger than that of observation, of PCP are found over East Asia. The largest wet bias is found in winter and the largest cold bias is found in summer. The RMSE of temperature in the annual mean increases and this trend happens in winter, too. That is, higher resolution model shows generally better performances in simulation T2m and PCP. Based on IPCC SRES scenarios, East Asia will experience warmer and wetter climate in the coming $21^{st}$ century. It is predict the T2m increase in East Asia is larger than global mean temperature. As the latitude goes high, the warming over the continents of East Asia showed much more increase than that over the ocean. An enhanced land-sea contrast is proposed as a possible mechanism of the intensified Asian summer monsoon. But, the inter-model variability in PCP changes is large.

Projection of Future Heating and Cooling Degree Days over South Korea under the IPCC SRES Scenarios: An Experiment with CCSM3 and MM5 Models (IPCC SRES 시나리오에 따른 우리나라의 미래 냉난방도일 전망: CCSM3와 MM5 모델 활용)

  • Choi, Jin Young;Song, Chang Kun;Kim, Deok Rae;Hong, Sung Chul;Hong, Yoo Deog;Lee, Jae Bum
    • Journal of Climate Change Research
    • /
    • v.4 no.2
    • /
    • pp.141-158
    • /
    • 2013
  • In this study, the projection of future heating and cooling degree days (HDDs and CDDs) has been conducted over South Korea for the period 1996~2005 with 2046~2055 and 2091~2100, using CCSM3 and MM5 simulations driven by the six IPCC SRES emission scenarios (A2, A1B, A1FI, A1T, B1, and B2). Annual mean surface air temperature increases by $1.2{\sim}3.4^{\circ}C$ at the end of the 21st century comparing to the present-day (1996~2005) in South Korea. HDDs decrease by 8~25% and CDDs increase up to 242~1,448% with corresponding changes in temperature. These increases and decreases also change the duration of HDDs and CDDs. HDDs duration decreases by 1 month, while the expansion of CDDs duration is much longer than 2 months. Thus, projected future HDDs and CDDs changes appear that cooling energy demand in summer season would increase and heating energy demand in winter would decrease in the future. Especially, these remarkable changes would be obvious at high mountain area, Gangwon-do and at south area, Jeju island. In the sense of future energy supply and policy, electrical energy for cooling in summer could be getting much more its importance rather than fossil energy used for heating in winter.

Development Strategy for New Climate Change Scenarios based on RCP (온실가스 시나리오 RCP에 대한 새로운 기후변화 시나리오 개발 전략)

  • Baek, Hee-Jeong;Cho, ChunHo;Kwon, Won-Tae;Kim, Seong-Kyoun;Cho, Joo-Young;Kim, Yeongsin
    • Journal of Climate Change Research
    • /
    • v.2 no.1
    • /
    • pp.55-68
    • /
    • 2011
  • The Intergovernmental Panel on Climate Change(IPCC) has identified the causes of climate change and come up with measures to address it at the global level. Its key component of the work involves developing and assessing future climate change scenarios. The IPCC Expert Meeting in September 2007 identified a new greenhouse gas concentration scenario "Representative Concentration Pathway(RCP)" and established the framework and development schedules for Climate Modeling (CM), Integrated Assessment Modeling(IAM), Impact Adaptation Vulnerability(IAV) community for the fifth IPCC Assessment Reports while 130 researchers and users took part in. The CM community at the IPCC Expert Meeting in September 2008, agreed on a new set of coordinated climate model experiments, the phase five of the Coupled Model Intercomparison Project(CMIP5), which consists of more than 30 standardized experiment protocols for the shortterm and long-term time scales, in order to enhance understanding on climate change for the IPCC AR5 and to develop climate change scenarios and to address major issues raised at the IPCC AR4. Since early 2009, fourteen countries including the Korea have been carrying out CMIP5-related projects. Withe increasing interest on climate change, in 2009 the COdinated Regional Downscaling EXperiment(CORDEX) has been launched to generate regional and local level information on climate change. The National Institute of Meteorological Research(NIMR) under the Korea Meteorological Administration (KMA) has contributed to the IPCC AR4 by developing climate change scenarios based on IPCC SRES using ECHO-G and embarked on crafting national scenarios for climate change as well as RCP-based global ones by engaging in international projects such as CMIP5 and CORDEX. NIMR/KMA will make a contribution to drawing the IPCC AR5 and will develop national climate change scenarios reflecting geographical factors, local climate characteristics and user needs and provide them to national IAV and IAM communites to assess future regional climate impacts and take action.

Simulations of Summertime Surface Ozone Over the Korean Peninsula Under IPCC SRES A2 and B1 Scenarios (IPCC SRES A2와 B1 시나리오에 따른 한반도지역의 여름철 지표 오존의 수치모의)

  • Hong, Sung-Chul;Choi, Jin-Young;Song, Chang-Keun;Hong, You-Deog;Lee, Suk-Jo;Lee, Jae-Bum
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.3
    • /
    • pp.251-263
    • /
    • 2013
  • The surface ozone concentrations changes were investigated in response to climate change over the Korean peninsula for summertime using the global-regional one way coupled Integrated Climate and Air quality Modeling System (ICAMS). The future simulations were conducted under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 and B1 scenarios. The modeling system was applied for four 10-year simulations: 1996~2005 as a present-day case, 2016~2025, 2046~2055, and 2091~2100 as future cases. The results in this study showed that the mean surface ozone concentrations increased up to 0.5~3.3 ppb under the A2, but decreased by 0.1~10.9 ppb under the B1 for the future, respectively. However, its increases were lower than an increase of the average daily maximum 8-hour (DM8H) surface ozone concentrations which was projected to increase by 2.8~6.5 ppb under the A2. The DM8H surface ozone concentrations seem to be therefore far more affected by the climate and emissions changes than mean values. The probability of exceeding 60 ppb was projected to increase by 6~19% under the A2. In the case of B1, its changes were presented with an increase of 2.9% in the 2020s but no occurrence in the 2100s due to the effect of the reduced emissions. Future projection on surface ozone concentrations was generally shown to have almost the similar trend as the emissions of $NO_x$ and NMVOC.

Uncertainties estimation of AOGCM-based climate scenarios for impact assessment on water resources (수자원 영향평가를 위한 기후변화 시나리오의 불확실성 평가)

  • Park E-Hyung;Im Eun-Soon;Kwon Won-Tae;Lee Eun-Jeong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.138-142
    • /
    • 2005
  • The change of precipitation and temperature due to the global. warming eventually caused the variation of water availability in terms of potential evapotranspiration, soil moisture, and runoff. In this reason national long-term water resource planning should be considered the effect of climate change. Study of AOGCM-based scenario to proposed the plausible future states of the climate system has become increasingly important for hydrological impact assessment. Future climate changes over East Asia are projected from the coupled atmosphere-ocean general circulation model (AOGCM) simulations based on Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 and B2 scenarios using multi-model ensembles (MMEs) method (Min et al. 2004). MME method is used to reduce the uncertainty of individual models. However, the uncertainty increases are larger over the small area than the large area. It is demonstrated that the temperature increases is larger over continental area than oceanic area in the 21st century.

  • PDF

Snowmelt Impact on Watershed Hydrology Using Climate Change Scenarios - Soyanggang-dam and Chungju-dam Watersheds - (미래 기후변화에 따른 융설의 변화가 유역수문에 미치는 영향 - 소양강댐, 충주댐 유역 -)

  • Shin Hyung-Jin;Kang Su-Man;Kwon Hyung-Joong;Kim Seong-Joon
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.198-201
    • /
    • 2006
  • The objective of this study is to evaluate snowmelt impact on watershed hydrology using climate change scenarios on Soyanggang-dam and Chungju-dam watershed. SLURP model was used for analyzing hydrological changes based on climate changes. The results (in years 2050 and 2100) of climate changes scenarios was CCCma CGCM2 of SRES suggested by IPCC and the snow cover map and snow depth was derived from NOAA/AVHRR images. The model was calibrated and verified for dam inflow data from 1998 to 2001.

  • PDF

Land Cover Change Prediction Based on Climate Change Scenarios using CLUE Model (CLUE 모형과 기후변화 시나리오를 이용한 토지피복 변화 예측)

  • Oh, Yun-Gyeong;Choi, Jin-Yong;Lee, Sang-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1546-1550
    • /
    • 2010
  • 최근 IPCC에서는 제 4차 평가보고서를 통해 대기 속 이산화탄소 농도가 산업혁명 이전에 비해 2005년 기준 약 35% 증가하였으며, 지난 1세기 동안 지구 평균기온이 $0.74^{\circ}C$ 증가하였다고 발표하였다. 이러한 기후변화로 인해 야기된 홍수, 가뭄, 사막화, 생태계 혼란 등의 심각한 환경문제를 해결하고자 UN에서는 1992년 세계 환경 개발에 관한 리우 데 자네이로 정상회의에서 기후변화에 관한 기본협약을 체결하여 국제적인 대책을 마련하기 위해 노력하고 있다. 이 중 토지이용변화에 관한 연구는 기후변화를 야기하는 주요한 요인에 관한 연구로서 온실가스 증가와 생물종다양성, 수문학적인 변화 등을 파악하는 데 활용되고 있다. 따라서 기후변화에 대응하고 지속가능한 개발 정책을 수립하기 위해서는 다양한 경제학적, 사회학적인 시나리오 조건에서 미래의 토지이용변화 양상을 살펴볼 필요가 있다. 이에 본 연구에서는 토지이용변화에 영향을 미치는 사회 경제적 요인과 과거의 토지이용변화 패턴을 고려하여 토지이용변화를 모델링 할 수 있는 CLUE(The Conversion of Land Use and its Effects) 모델을 이용하여 SRES(Special Report on Emissions Scenarios) 시나리오에 기초한 토지피복 변화를 살펴보고자 한다. 이는 향후 기후변화를 최소화하기위한 개발전략 수립에 있어서 정책방향을 결정하는 데 기초자료로 활용될 수 있을 것이다.

  • PDF

A Review of Regional Climate Change in East-Asia and the Korean Peninsula Based on Global and Regional Climate Modeling Researches (전구 및 지역기후 모델 결과에 근거한 동아시아 및 한반도 지역기후 변화 전망 연구 소개 및 고찰)

  • Hong, Song You;Kwon, Won Tae;Chung, Il Ung;Baek, Hee Jeong;Byun, Young Hwa;Cha, Dong Hyun
    • Journal of Climate Change Research
    • /
    • v.2 no.4
    • /
    • pp.269-281
    • /
    • 2011
  • In this review, numerical model results from global and regional climate models are introduced to regional detailed climate changes over East Asia and Korea. In particular, regional climate change scenarios in this region, which are created by several research groups in Korea based on Special Report on Emissions Scenarios (SRES) of IPCC 4th assessment report are introduced and characteristics of the scenarios are investigated. Despite slight differences in intensity, all scenarios reveal prominent warming over the Korean peninsula in future climate. Changes in precipitation amount vary with given scenarios and periods, but the frequency and intensity of heavy precipitation generally tend to increase in all scenarios. South Korea except for mountainous regions is expected to change into subtropical climate in future, which accompanies distinct changes in ecosystems and seasons.