• Title/Summary/Keyword: IPCC, Intergovernmental Panel on Climate Change

Search Result 153, Processing Time 0.025 seconds

An Assessment of Flooding Risk Using Flash Flood Index in North Korea - Focus on Imjin Basin - (돌발홍수 지수를 이용한 북한 홍수 위험도 평가 - 임진강 유역을 중심으로 -)

  • Kwak, Chang Jae;Choi, Woo Jung;Cho, Jae Woong
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.12
    • /
    • pp.1037-1049
    • /
    • 2015
  • The most of natural disasters that occur in North Korea are flood, typhoon and damage from heavy rain. The damage caused by those disasters since the mid-1990s is aggravating North Korea's economic difficulties every year. By recognizing the seriousness of the damages from the floods, the North Korean government has carried out the river maintenance, farmland restoration, land readjustment and afforestation projects since the last-1990s, but it has failed preventing the damages. In order to estimate the degree of flood risk regarding damage from chronic floods that occur inveterately in North Korea, this research conducted an additional simulation for rainfall-runoff analysis to reflect the characteristics of the ungauged area that make foreign countries hard to obtain the hydrological data and do not open the topographical data to public. In addition, this research estimates the degree of flood risk by selecting the factors of the hazard, exposure and vulnerability by following the standards of the Intergovernmental Panel on Climate Change (IPCC).

Predicting the Methane Gas Generation Rate at Landfill Sites Using the Methane Gas Generation Rate Constant (k)

  • Chung, Jin-Do;Kim, Jung-Tae
    • Asian Journal of Atmospheric Environment
    • /
    • v.2 no.2
    • /
    • pp.116-124
    • /
    • 2008
  • In this study, the Tier 2 method recommended by the Intergovernmental Panel on Climate Change (IPCC) was used to predict the methane generation rate at two landfill sites, designated as Y and C for purposes of this study, in South Korea. Factors such as the average annual waste disposal, methane emissions ($L_0$) and methane gas generation rate constant (k) were estimated by analyses of waste and the historical data for the landfills. The value of k was estimated by field experiments and then the changes in the methane generation rate were predicted through the year 2050, based on the value of k. The Y landfill site, which was in operation until the year 2008, will generate a total of 17, 198.7 tons by the end of 2018, according to our estimations. At the C landfill site, which will not be closed until the end of 2011, the amount of methane gas generated in 2011 will be 3,316 tons and the total amount of gas generated by 2029 will be 61,200 tons. The total production rate of methane gas at the C landfill is higher than that of the Y landfill. This indicates that the capacity of a landfill site affects the production rate of methane gas. However, the interrelation between the generation rate of methane and the value of k is weak. In addition, the generation of methane gas does not cease even when the operations at a landfill site come to a close and the methane gas production rate is at its highest at end of the operating life of a landfill site.

Estimating Carbon Sequestration in Forest using KOMPSAT-2 Imagery (KOMPSAT-2 영상을 이용한 산림의 이산화탄소 흡수량 추정)

  • Kim, So-ra;Lee, Woo-kyun;Kwak, Han-bin;Choi, Sung-ho
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.3
    • /
    • pp.324-330
    • /
    • 2009
  • The objective of this study is to estimate the carbon sequestration in forest stands using KOMPSAT-2 imagery. For estimating the amount of carbon sequestration, the stand biomass of forest was estimated with the total weight, which was the sum of individual tree weight. Individual tree volumes could be estimated by the crown width extracted from KOMPSAT-2 imagery. In particular, the carbon conversion index and the ratio of the $CO_2$ molecular weight to the C atomic weight, reported in the Intergovernmental Panel on Climate Change (IPCC) guideline, was used to convert the stand biomass into the amount of carbon sequestration. Thereafter, the KOMPSAT-2 imagery was classified with the segment based classification (SBC) method in order to quantify carbon sequestration by tree species. This approach, estimating the amount of carbon sequestration for certain species in stand, can be available to extend plot-based carbon sequestration to stand-based carbon sequestration.

A study on estimation of optimal reserves for multi-purpose reservoirs considering climate change (기후변화를 고려한 다목적댐의 적정 예비율 산정 연구)

  • Chae, Heechan;Ji, Jungwon;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.spc
    • /
    • pp.1127-1134
    • /
    • 2018
  • According to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), climate change increases the frequency of abnormal weather phenomenon. As the frequency of abnormal weather phenomenon increases, frequency of disasters related to water resources such as floods and droughts also increases. Drought is the main factor that directly affects water supply. Recently, the intensity of drought and the frequency of drought occurrence have increased in Korea. So, there is a need for water resource securing technology for stable water supply. Korean Water Plan mentioned that water reserves concept is necessary for stable water supply. Most multi-purpose reservoirs in Korea have emergency storage in addition to conservation storage used for water supply. However, there is no clear use standard for emergency storage. This study investigated the use of reservoir reserves for stable water supply. In order to consider the climate change impact, the AR5-based hydrological scenario was used as inflow data for the reservoir simulation model. Reservoir simulations were carried out in accordance with the utilization conditions of emergency storage and water supply adjustment standard. The optimal reserves for each multi-purpose reservoirs was estimated using simulation results.

Assessment on Nitrous oxide (N2O) Emissions of Korea Agricultural Soils in 2009 (2009년 우리나라 농경지 토양에서의 N2O 배출량 평가)

  • Jeong, Hyun-Cheol;Kim, Gun-Yeob;Lee, Deog-Bae;Shim, Kyo-Moon;Lee, Seul-Bi;Kang, Kee-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1207-1213
    • /
    • 2011
  • This study was conducted to assess $N_2O$ emissions in agricultural soils of Korea. According to 1996 and 2006 IPCC (Intergovernmental Panel on Climate Change) methodology, $N_2O$ emission was calculated the sum of direct emission ($N_2O_{DIRECT}$) and indirect emission ($N_2O_{INDIRECT}$). To calculate $N_2O$ emissions, emission factor was used default of IPCC and activity data was used the food, agricultural, forestry and fisheries statistical yearbook of MIFAFF (Ministry for Food, Agriculture, Forestry and Fisheries). It was emitted 8,608 $N_2O$ Mg resulted from direct emission by application of chemical fertilizer and animal manure, input in n-fixation crops and input of crop residues and emissions converted $N_2O$ into $CO_2$ equivalent was 2,668 $CO_2$-eq Gg. Indirect emission as $N_2O_{(G)}$ (atmospheric deposition of $NH_3$ and $NO_X$) and $N_2O_{(L)}$ (leaching and runoffs) were 4,567 and 6,013 $N_2O$ Mg and emissions converted $N_2O$ into $CO_2$ equivalent were 1,416 and 1,864 $CO_2$-eq Gg, respectively. Total $N_2O$ emission in Korea agricultural soil in 2009 was 5,948 $CO_2$-eq Gg.

Assessment of Climate Change Impact on Evapotranspiration and Soil Moisture in a Mixed Forest Catchment Using Spatially Calibrated SWAT Model (SWAT 모형을 이용한 미래 기후변화가 설마천 혼효림 유역의 증발산과 토양수분에 미치는 영향 평가)

  • Ahn, So Ra;Park, Geun Ae;Jang, Cheol Hee;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.6
    • /
    • pp.569-583
    • /
    • 2013
  • This study is to evaluate the future climate change impact on hydrological components in the Seolmacheon ($8.54km^2$) mixed forest catchment located in the northwest of South Korea using SWAT (Soil and Water Assessment Tool) model. To reduce the uncertainty, the model was spatially calibrated (2007~2008) and validated (2009~2010) using daily observed streamflow, evapotranspiration, and soil moisture data. Hydrological predicted values matched well with the observed values by showing coefficient of determination ($R^2$) from 0.74 to 0.91 for streamflow, from 0.56 to 0.71 for evapotranspiration, and from 0.45 to 0.71 for soil moisture. The HadGEM3-RA future weather data of Representative Concentration pathway (RCP) 4.5 and 8.5 scenarios of the IPCC (Intergovernmental Panel on Climate Change) AR5 (Assessment Report 5) were adopted for future assessment after bias correction of ground measured data. The future changes in annual temperature and precipitation showed an upward tendency from $0.9^{\circ}C$ to $4.2^{\circ}C$ and from 7.9% to 20.4% respectively. The future streamflow showed an increase from 0.6% to 15.7%, but runoff ratio showed a decrease from 3.8% to 5.4%. The future predicted evapotranspiration about precipitation increased from 4.1% to 6.8%, and the future soil moisture decreased from 4.3% to 5.5%.

Assessment of a rain barrel sharing network in Korea using storage-reliability-yield relationship (저류용량-신뢰도-수요량 관계를 이용한 레인배럴 공유 네트워크의 국내 성능 평가)

  • Kwon, Youjeong;Seo, Yongwon;Park, Chang Kun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.11
    • /
    • pp.961-971
    • /
    • 2020
  • The Intergovernmental Panel on Climate Change (IPCC) reported that the amount of precipitation in South Korea would increase regardless of the reduction of Greenhouse Gas (GHG) emissions. Moreover, the temporal and spatial rainfall variation would also increase in the future. Due to the geographic allocation of Korea, more than 80% of the annual precipitation occurs in the wet season from early July to late September. It is expected that the average precipitation in this period will increase from the Representative Concentration Pathways (RCP) scenario projections. These predictions imply an increased variability of available water resources. Rainwater harvesting system is widely used as an alternative water resources today. This study introduces a RBSN (rain barrel sharing network) as an efficient way to utilize alternative water resources under the RCP scenarios. The concept of RBSN combines individual rainwater harvesting system to a sharing network, which make the whole system more reliable. This study evaluated a RBSN in South Korea composed of four users based on a storage-reliability-yield (SRY) relationship. The study area comprises all 17 provincal areas in South Korea. The result showed a huge benefit from a RBSN in Korea under the historical rainfall condition. Even in the climate change condition, the results showed that a RBSN is still beneficial but the changes in reliability are different depending on provinces in Korea. The results of this study shows that a RBSN is a very effective and alternative measure that can deal with the impacts of climate change in the near future.

A Study on Identification of the Heat Vulnerability Area Considering Spatial Autocorrelation - Case Study in Daegu (공간적 자기상관성을 고려한 폭염취약지역 도출에 관한 연구 - 대구광역시를 중심으로)

  • Seong, Ji Hoon;Lee, Ki Rim;Kwon, Yong Seok;Han, You Kyung;Lee, Won Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.295-304
    • /
    • 2020
  • The IPCC (Intergovernmental Panel on Climate Change) recommended the importance of preventive measures against extreme weather, and heat waves are one of the main themes for establishing preventive measures. In this study, we tried to analyze the heat vulnerable areas by considering not only spatial characteristics but also social characteristics. Energy consumption, popu lation density, normalized difference vegetation index, waterfront distance, solar radiation, and road distribution were examined as variables. Then, by selecting a suitable model, SLM (Spatial Lag Model), available variables were extracted. Then, based on the Fuzzy theory, the degree of vulnerability to heat waves was analyzed for each variable, and six variables were superimposed to finally derive the heat vulnerable area. The study site was selected as the Daegu area where the effects of the heat wave were high. In the case of vulnerable areas, it was confirmed that the existing urban areas are mainly distributed in Seogu, Namgu, and Dalseogu of Daegu, which are less affected by waterside and vegetation. It was confirmed that both spatial and social characteristics should be considered in policy support for reducing heat waves in Daegu.

The Water Quality Analysis on Climate Change and Dam construction (기후변화와 저수지 건설에 따른 수질분석)

  • Kim, Dong-Il;Choi, Hyun-Gu;Park, Tae-Won;Han, Kun-Yeun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.193-193
    • /
    • 2011
  • 국제기구인 정부간 기후변화협의체(Intergovernmental Panel on Climate Change, 이하 IPCC)에서는 기후변화가 기온 상승에 따른 증발산량의 증가, 강수량 및 유출량의 시공간적 분포의 변동 등을 초래하여 수자원의 효율적 관리 및 안정적인 공급에 어려움을 증대시킬 것으로 전망하였다. 또한 IPCC 4차 보고서에 따르면 21세기말 지구의 평균기온은 현재보다 최대 $6.3^{\circ}C$정도 더 상승할 것으로 전망하였다. 전구평균기온이 $3.0^{\circ}C$ 증가할 경우 아시아에서만 연간 700만 명이상이 홍수피해 위기에 직면할 것으로 예상되고 있다. 국내의 경우 기온은 전구평균기온에 비해 2배 이상 높은 $1.5^{\circ}C$ 정도 상승하였으며, 최근 50년간의 강우일수는 감소한 반면 일강수량이 80mm 이상인 호우일수의 발생빈도는 증가되고 있다고 보고되었다. 또한 최근의 물수지 해석과 관련하여 거시적인 관점에서 기온 및 강수량 증가에 따른 물순환 과정을 모의하고, 농업용수, 댐건설, 도시화, 토지이용의 변화 등 인위적인 환경 변화 및 기후변화에 따른 유출량의 변화를 정량화하려는 연구들이 수행되고 있다(한국건설기술원, 2007). 이를 위하여 단기적이 아니라 장기적인 측면에서 유출분석을 할 필요가 있으나, 현재까지 보유하고 있는 실측 자료의 한계 및 이러한 조사를 위해 요구되는 시간 및 비용의 한계 때문에, 유출해석 모형을 주로 이용하고 있다. 본 연구에서는 장래 건설예정인 미계측 호소의 유량과 수질을 모의하기 위하여 하천, 하구, 호소 및 해역에 고루 적용할 수 있는 3차원 수리 동력학적인 모델인 EFDC 모형과 시간의 변화에 따른 수질을 모의하는데 가장 널리 이용하는 WASP 모형을 도입하였다. 향후, 내성천의 영주댐 건설과 같은 큰 변화가 발생하였을 기후 변화의 영향을 파악하기 위하여 EFDC와 WASP모형을 이용하여 대상유역에 대한 유출량과 수온의 변화를 통하여 A2, B1 기후변화 시나리오별로 2020년, 2050년, 2080년의 수질(BOD, TN, TP)변화를 분석하여 보았다. 연구의 결과는 다음과 같이 나타났다. EFDC 및 WASP 모형의 연계를 통한 기후 변화 시나리오에 따른 미래의 저수지 수질예측 모의를 수행한 결과, BOD, TN, TP 등 수질농도 변화는 2020년에서 2080년도로 갈수록 BOD, TN 다소 증가하는 경향을 나타내었고, TP농도는 감소하였다. 시나리오별 변화 특성은 TN, TP 농도는 A2 시나리오가 다소 높고, BOD 농도는 B1 시나리오가 A2보다 높은 것으로 나타났다. EFDC와 WASP을 이용하여 미계측 호소에 대한 기후변화 시나리오별로 적용하여 수질변화를 예측하여 보았는데, 향후 기후변화에 따른 기온, 유량변화와 수질 항목간의 상간관계 정립 및 수질 모의의 불확실성 등에 대한 추가 연구가 필요할 것으로 판단된다.

  • PDF

Greenhouse Gas Inventory in Land-Use Change and Forestry in Korea (임업 및 토지이용부문의 온실가스 흡수 및 배출 현황)

  • 이경학;손영모;김영수
    • Journal of Korea Foresty Energy
    • /
    • v.20 no.1
    • /
    • pp.53-61
    • /
    • 2001
  • An approach method for the greenhouse gas inventory in land-use change and forestry in Korea based on the 1996 revised IPCC(Intergovernmental Panel on Climate Change) guideline was developed and carbon budget of the year 1998 in this sector was estimated using the developed method as follow. For the category of changes in forests and other woody biomass stocks, carbon removal from the atmosphere by growth was 11,911 thousands TC(tons of carbon), carbon emissions to the atmosphere by harvests was 824 thousands TC, and net carbon removals was, therefore, 11,087 thousands TC, Emissions from decay of biomass remained after conversion of forest land to other land uses was estimated to 82 thousands TC For the category of land-use change and management, carbon emissions in mineral soils from land-use change was 1,025 thousands TC, that from liming of agricultural soils was 32 thousands TC, and total emissions was, therefore, 1,057 thousands TC. In summary, the carbon budget of land-use change and forestry of the year 1988 was as follows; the removal of 11,911 thousands TC, the emissions of 1,963 thousands TC, and the net removal of 9,948 thousands TC which was 9.6% of the emissions of 103,601 thousands TC from energy sector of the same year.

  • PDF