• Title/Summary/Keyword: IP Routing

Search Result 365, Processing Time 0.026 seconds

Cache Table Management for Effective Label Switching (효율적인 레이블 스위칭을 위한 캐쉬 테이블 관리)

  • Kim, Nam-Gi;Yoon, Hyun-Soo
    • Journal of KIISE:Information Networking
    • /
    • v.28 no.2
    • /
    • pp.251-261
    • /
    • 2001
  • The traffic on the Internet has been growing exponentially for some time. This growth is beginning to stress the current-day routers. However, switching technology offers much higher performance. So the label switching network which combines IP routing with switching technology, is emerged. EspeciaJJy in the data driven label switching, flow classification and cache table management are needed. Flow classification is to classify packets into switching and non-switching packets, and cache table management is to maintain the cache table which contains information for flow classification and label switching. However, the cache table management affects the performance of label switching network considerably as well as flowclassification because the bigger cache table makes more packet switched and maintains setup cost lower, but cache is restricted by local router resources. For that reason, there is need to study the cache replacement scheme for the efficient cache table management with the Internet traffic characterized by user. So in this paper, we propose several cache replacement schemes for label switching network. First, without the limitation at switching capacity in the router. we introduce FIFO(First In First Out). LFC(Least Flow Count), LRU(Least Recently Used! scheme and propose priority LRU, weighted priority LRU scheme. Second, with the limitation at switching capacity in the router, we introduce LFC-LFC, LFC-LRU, LRU-LFC, LRU-LRU scheme and propose LRU-weighted LRU scheme. Without limitation, weighted priority LRU scheme and with limitation, LRU-weighted LRU scheme showed best performance in this paper.

  • PDF

NetLogo Extension Module for the Active Participatory Simulations with GoGo Board (고고보드를 이용한 능동적 참여 모의실험을 위한 NetLogo 확장 모듈)

  • Xiong, Hong-Yu;So, Won-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11B
    • /
    • pp.1363-1372
    • /
    • 2011
  • Flooding based routing protocols are usually used to disseminate information in wireless sensor networks. Those approaches, however, require message retransmissions to all nodes and induce huge collision rate and high energy consumption. In this paper, HoGoP (Hop based Gossiping Protocol) in which all nodes consider the number of hops from sink node to them, and decide own gossiping probabilities, is introduced. A node can decide its gossiping probability according to the required average reception percentage and the number of parent nodes which is counted with the difference between its hop and neighbors' ones. Therefore the decision of gossiping probability for network topology is adaptive and this approach achieves higher message reception percentage with low message retransmission than the flooding scheme. Through simulation, we compare the proposed protocol with some previous ones and evaluate its performance in terms of average reception percentage, average forwarding percentage, and forwarding efficiency. In addition, average reception percentage is analyzed according to the application requirement.

Quantum Packet for the Next Generation Network/ISDN3

  • Lam, Ray Y. W.;Chan, Henry C. B.;Chen, Hui;Dillon, Tharam S.;Li, Victor O. K.;Leung, Victor C. M.
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.316-330
    • /
    • 2008
  • This paper proposes a novel method for transporting various types of user traffic effectively over the next generation network called integrated services digital network 3 (ISDN3) (or quantum network) using quantum packets. Basically, a quantum packet comprises one or more 53-byte quanta as generated by a "quantumization" process. While connection-oriented traffic is supported by fixed-size quantum packets each with one quantum to emulate circuit switching, connectionless traffic (e.g., IP packets and active packets) is carried by variable-size quantum packets with multiple quanta to support store-and-forward switching/routing. Our aim is to provide frame-like or datagram-like services while enabling cell-based multiplexing. The quantum packet method also establishes a flexible and extensible framework that caters for future packetization needs while maintaining backward compatibility with ATM. In this paper, we discuss the design of the quantum packet method, including its format, the "quantumization" process, and support for different types of user traffic. We also present an analytical model to evaluate the consumption of network resources (or network costs) when quantum packets are employed to transfer loss-sensitive data using three different approaches: cut-through, store-and-forward and ideal. Close form mathematical expressions are obtained for some situations. In particular, in terms of network cost, we discover two interesting equivalence phenomena for the cut-through and store-and-forward approaches under certain conditions and assumptions. Furthermore, analytical and simulation results are presented to study the system behavior. Our analysis provides valuable insights into the. design of the ISDN3/quantum network.

Simulation Analysis for Verifying an Implementation Method of Higher-performed Packet Routing

  • Park, Jaewoo;Lim, Seong-Yong;Lee, Kyou-Ho
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.440-443
    • /
    • 2001
  • As inter-network traffics grows rapidly, the router systems as a network component becomes to be capable of not only wire-speed packet processing but also plentiful programmability for quality services. A network processor technology is widely used to achieve such capabilities in the high-end router. Although providing two such capabilities, the network processor can't support a deep packet processing at nominal wire-speed. Considering QoS may result in performance degradation of processing packet. In order to achieve foster processing, one chipset of network processor is occasionally not enough. Using more than one urges to consider a problem that is, for instance, an out-of-order delivery of packets. This problem can be serious in some applications such as voice over IP and video services, which assume that packets arrive in order. It is required to develop an effective packet processing mechanism leer using more than one network processors in parallel in one linecard unit of the router system. Simulation analysis is also needed for verifying the mechanism. We propose the packet processing mechanism consisting of more than two NPs in parallel. In this mechanism, we use a load-balancing algorithm that distributes the packet traffic load evenly and keeps the sequence, and then verify the algorithm with simulation analysis. As a simulation tool, we use DEVSim++, which is a DEVS formalism-based hierarchical discrete-event simulation environment developed by KAIST. In this paper, we are going to show not only applicability of the DEVS formalism to hardware modeling and simulation but also predictability of performance of the load balancer when implemented with FPGA.

  • PDF

A Multibit Tree Bitmap based Packet Classification (멀티 비트 트리 비트맵 기반 패킷 분류)

  • 최병철;이정태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.3B
    • /
    • pp.339-348
    • /
    • 2004
  • Packet classification is an important factor to support various services such as QoS guarantee and VPN for users in Internet. Packet classification is a searching process for best matching rule on rule tables by employing multi-field such as source address, protocol, and port number as well as destination address in If header. In this paper, we propose hardware based packet classification algorithm by employing tree bitmap of multi-bit trio. We divided prefixes of searching fields and rule into multi-bit stride, and perform a rule searching with multi-bit of fixed size. The proposed scheme can reduce the access times taking for rule search by employing indexing key in a fixed size of upper bits of rule prefixes. We also employ a marker prefixes in order to remove backtracking during searching a rule. In this paper, we generate two dimensional random rule set of source address and destination address using routing tables provided by IPMA Project, and compare its memory usages and performance.

An Internet Stopper Using ARP Spoofing with Automatic Node Identification (자동 노드 인식 기능을 갖는 ARP 스푸핑을 이용한 인터넷 차단기)

  • Jung, In-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.6
    • /
    • pp.93-106
    • /
    • 2011
  • In this paper we describe an efficient and easy to use internet stopper, which is called AINS (Automatic Internet Stopper), which uses ARP spoofing scheme. Instead of forwarding packets to router for the case of hacking, in ARP spoofing, the AINS ignores all the packets so that internet stopping operates. The AINS program needs to be installed only in manager computer that does not require additional agent program. In addition to setting manually the stopping computer list, it is able to indentify network nodes automatically by analyzing broadcasting packets. The experimental results show that less than 4 secs for spoofing interval is enough for blocking internet usage regardless the number of computers and therefore network overhead is negligible. The AINS can indentify and control network nodes not only on same subnet but also on different subnet only if they are connected onto same ethernet switch physically. It is being used for an efficient tool for controling internet usage of university computer laboratory and also for an efficient network management.

Providing Differentiated Services through Orthogonal Relationship among Rerouting Mechanisms (Rerouting기법들 간에 Orthogonal 관계를 통한 차별적인 서비스 제공에 관한 연구)

  • Han, Jeong-Su;Jeong, Jin-Uk
    • The KIPS Transactions:PartC
    • /
    • v.9C no.4
    • /
    • pp.505-512
    • /
    • 2002
  • Rerouting mechanisms must be used by connections in order to provide QoS (Quality of service) characterization of services, which provides mean for reliable and efficient transfer of services under fault generating network. Also, user's services can classily according to their QoS characterizations. In this paper, we study classification of user services according to their characterization for providing differentiated services, and propose rerouting mechanisms under fault generating network. For this, we study various rerouting mechanisms including rerouting locus of start (Source Rerouting, Link Rerouting), rerouting timing of start (Immediate Rerouting, Random Rerouting) and their orthogonal relationship, eventually we propose new rerouting mechanisms such as DRIT, DRDT which show higher performance according to priority of services than others. Our simulation shows that rerouting mechanism (DRDT), applied differentiated mechanisms is better performance to provide differentiated service.

An Efficient Multicast-based Binding Update Scheme for Network Mobility

  • Kim, Moon-Seong;Radha, Hayder;Lee, Jin-Young;Choo, Hyun-Seung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.1
    • /
    • pp.23-35
    • /
    • 2008
  • Mobile IP (MIP) is the solution supporting the mobility of Mobile Nodes (MNs), however, it is known to lack the support for NEtwork MObility (NEMO). NEMO manages situations when an entire network, composed of one or more subnets, dynamically changes its point of attachment to the Internet. NEMO Basic Support (NBS) protocol ensures session continuity for all the nodes in a mobile network, however, there exists a serious pinball routing problem. To overcome this weakness, there are many Route Optimization (RO) solutions such as Bi-directional Tunneling (BT) mechanism, Aggregation and Surrogate (A&S) mechanism, Recursive Approach, etc. The A&S RO mechanism is known to outperform the other RO mechanisms, except for the Binding Update (BU) cost. Although Improved Prefix Delegation (IPD) reduces the cost problem of Prefix Delegation (PD), a well-known A&S protocol, the BU cost problem still presents, especially when a large number of Mobile Routers (MRs) and MNs exist in the environment such as train, bus, ship, or aircraft. In this paper, a solution to reduce the cost of delivering the BU messages is proposed using a multicast mechanism instead of unicasting such as the traditional BU of the RO. The performance of the proposed multicast-based BU scheme is examined with an analytical model which shows that the BU cost enhancement is up to 32.9% over IPDbased, hence, it is feasible to predict that the proposed scheme could benefit in other NEMO RO protocols.

A Multicast-based Mobility Support Scheme in IPv6 Networks (IPv6 네트워크에서 멀티캐스트 기반 이동성 제공 방안)

  • Woo Mi ae;Jun Hong sun;Park Ho hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4B
    • /
    • pp.210-217
    • /
    • 2005
  • With rapid advance in wireless communication technologies, many researches are conducted for providing Internet data services while users are roaming around. Efficient management of mobility of mobile nodes is essential as the use of real-time application program grows. In this paper, we propose a multicast-based localized mobility support scheme in IPv6 networks. The proposed scheme utilizes a class of multicast routing protocol for the localized mobility support. Features of the proposed scheme are use of join to a multicast group and leave from that group to localize binding update information and provision of an extended multicast group management mechanism to reduce leave latency. The results of simulation show that the proposed scheme out-performs Mobile IPv6 and Hierarchical Mobile IPv6 in UDP and TCP traffic performance and in wasted bandwidth.

NEMO-enabled Hybrid Distributed Mobility Management (네트워크 이동성을 지원하는 하이브리드 분산 이동성 관리)

  • Wie, Sunghong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.7
    • /
    • pp.1030-1040
    • /
    • 2018
  • In Distributed Mobility Management (DMM) protocol, the mobility functions are distributed to network edge closer to mobile users. DMM protocol has some advantages of low-cost traffic delivery, optimized routing path, high scalability. However, it needs many mobile anchors to exchange signaling messages and it results in a high signaling cost. Thus, previous works suggested the hybrid DMM protocol to reduce the high signaling cost for long-live sessions and this paper extends a hybrid scheme to the NEMO environment. The mobile routers are installed at vehicles and can move together with several mobile devices. So we can define the high-mobility property for mobile routers and suggest the hybrid scheme using this property. According to the high-mobility property of mobile routers, we can distribute the mobile anchors or allocate a centralized mobile anchor. In this paper, we mathematically analyze the performance of the proposed NEMO-enabled hybrid DMM protocol and show superior performance.