• Title/Summary/Keyword: IOTA Prototype

Search Result 2, Processing Time 0.019 seconds

Decode-and-Forward Cooperative Communication Based on IOTA-OFDM/OQAM System (IOTA-OFDM/OQAM 시스템 기반의 복호 후 전송 협력 통신)

  • Kim, Jaejin;Kim, Dong Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.12
    • /
    • pp.777-779
    • /
    • 2014
  • In this paper, we consider IOTA-OFDM/OQAM system that improves the transmission power and rate efficiency of conventional OFDM system and propose DF relaying cooperative communication scheme based on the IOTA-OFDM/OQAM system. In the proposed scheme, the destination receives orthogonal signals from source and relay simultaneously and combines using MRC. We demonstrated that the proposed schemes get better BER performance than conventional system because of the diversity gain.

Prototype Electromagnetic-Noise Filters Incorporated with Nano-Granular Co41Fe38Al13O8 Soft Ferromagnetic Thin Films on Coplanar Transmission Lines

  • Sohn, Jae-Cheon;Byun, Dong-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.2 s.285
    • /
    • pp.74-78
    • /
    • 2006
  • A non-integrated type noise filter on a Coplanar Waveguide (CPW) transmission line is demonstrated by using a highly resistive $Co_{41}Fe_{38}Al_{13}O_8$ nanogranular thin film with the dimensions of $4\;mm (\iota)\times4\;mm(\omega)\times0.1\;{\mu}m(t)$. The noise suppression characteristics are evaluated without placing an insulating layer between the CPW line and the magnetic thin film. The insertion loss is very low being less than 0.3 dB and this low value is maintained up to 2 GHz. At a ferromagnetic resonance frequency of 3.3 GHz, the power loss is very large and the degree of noise attenuation is measured to be 3 dB. This level of noise attenuation is still small for real applications; however, considering the small magnetic volume used in this work, further improvement is expected by simply increasing the magnetic volume and by integrating the magnetic thin film into the CPW transmission line.