본 연구에서는 Long Short Term Memory (LSTM) 신경망과 Gated Recurrent Unit(GRU) 신경망을 Internet of Things (IoT) 파워미터에 적용하여 단기 전력사용량 예측방법을 제안하고, 실제 가정의 전력사용량 데이터를 토대로 예측 성능을 분석한다. 성능평가 지표로써 Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Mean Percentage Error (MPE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE)를 이용한다. 실험 결과는 GRU 기반의 모델이 LSTM 기반의 모델에 비해 MAPE 기준으로 4.52%, MPE 기준으로 5.59%만큼의 성능개선을 보였다.
This paper proposes an optimal dynamic resource allocation method in IoT (Internet of Things) parking guidance system using Q-learning resource allocation model. In the proposed method, a resource allocation using a forecasting model based on Q-learning is employed for optimal utilization of parking guidance system. To demonstrate efficiency and availability of the proposed method, it is verified by computer simulation and practical testbed. Through simulation results, this paper proves that the proposed method can enhance total throughput, decrease penalty fee issued by SLA (Service Level Agreement) and reduce response time with the dynamic number of users.
Under the on-going evolution of the COVID-19 pandemic, estimating the economic impact of the pandemic is highly uncertain and challenging. This situation makes it difficult for policymakers, governors, and economic entities to formulate appropriate responses and decision makings. To provide useful information about the effect of the COVID-19 pandemic on the Korean economy, this study examined macroeconomic impact analysis stemming from the pandemic shocks with different scenarios for the Korean economy. Based on three scenarios using the growth rate of 2020 GDP and consumer expenditure patterns, the 2021 GDP by industry sector was forecast with two new approaches. First, the recovering process of the Korean economy from the shock was analyzed by applying a Flex-IO method. Second, a new forecasting approach combined with an IO coefficient matrix was applied to forecast the future GDP changes. The findings of this study are summarized as follows: First, the total GDP growth rate under the Pessimistic Scenario demonstrates less rebound from the shock than that of the Base Scenario. Second, agriculture, culture, and tourism-related sectors that are suffering from the severe losses of COVID-19 showed lower resilience than other different industries. Third, information and communications technology (ICT) industry maintains a stable growth trend and is expected to take the leading role for the Korean economy in the post-COVID-19 and the Industry 4.0 eras. The findings deliver that it needs to analyze how government expenditure responding the shock into the forecasting model, which can be more useful and reliable to simulate the resilience from the pandemic.
Journal of Information Technology Applications and Management
/
제26권2호
/
pp.61-73
/
2019
In 2019, 5G mobile communication technology will be commercialized. From the viewpoint of technological innovation, 5G service can be applied to other industries or developed further. Therefore, it is important to measure the demand of the Internet of things (IoT) because it is predicted to be commercialized widely in the 5G era and its demand hugely effects on the economic value of 5G industry. In this paper, we applied Bayesian method on regression model to find out the demand of 5G IoT service, wearable service in particular. As a result, we confirmed that the Bayesian regression model is closer to the actual value than the existing regression model. These findings can be utilized for predicting future demand of new industries.
항만 성능에 대한 정확한 평가는 컨테이너 물동량은 매우 중요한 요소이며, 효과적인 항만 개발 및 운영 전략에 대한 정확한 예측이 필수적이다. 하지만 해양 산업의 급격한 변화로 인해 컨테이너 물동량 예측의 정확성이 향상되기는 어렵다. 이를 해결하기 위해 사물인터넷(IoT)을 이용한 항만 성능에 미치는 영향을 분석하여 부산항의 경쟁력과 효율성을 향상시키기 위해 적용이 필요하다. 이에 본 연구에서는 부산항의 미래 컨테이너 물동량을 예측하기 위한 예측 모델을 개발하는 것을 목표로 이를 통해 항만 관리 기관의 개선된 의사 결정과 항만 생산성을 향상시키는 데 초점을 맞추고 있다. 항만 컨테이너 물동량을 예측하기 위해 본 연구에서는 기계 학습 모델의 Extreme Gradient Boosting (XGBoost) 기법을 도입하였다. XGBoost는 다른 알고리즘에 비해 높은 정확도, 빠른 학습 및 예측 속도,과적합을 방지하고 Feature Importance 제공하는 장점이 돋보인다. 특히 XGBoost는 회귀 예측 모델링에 직접 사용할 수 있어 기존 연구에서 제시된 물동량 예측 모델의 정확도 향상에 도움이 된다. 이를 통해 본 연구는 4.3% MAPE (Mean absolute percenture error) 값으로 제안된 방법이 컨테이너 물동량을 정확하고 신뢰성 있게 예측할 수 있다. 본 연구에서 제시한 방법론을 통해서 부산 컨테이너물동량의 정확성을 높일 수 있을 것으로 판단된다.
과수 화상병 꽃감염 방제를 위한 농용 항생제 살포 적기를 알려주고, 병징 출현을 예측해 현장 모니터링 시기 판단을 돕는 K-Maryblyt 예측모델을 정보시스템에서 자동으로 구동하는 FBcastS을 클라우드 컴퓨팅 환경에서 개발하였다. 4개의 단위 시스템으로 구성된 FBcastS 정보시스템은 기상자료 획득 및 처리, K-Maryblyt 모델 구동, 웹 정보 서비스 그리고 방제 적기 알림 발송의 기능별로 구성하였다. 기상자료 획득 단위 시스템은 우리나라 1,583지점의 관측기상과 예보기상을 수집할 뿐만 아니라 이들 중 과수원에서 직접 관측한 761지점의 기상자료에 대한 품질관리와 입력 자료변환 등 후처리를 수행한다. 모델 구동 단위 시스템은 K-Maryblyt 예측모델을 구동하고 그 결과를 database에 저장한다. 웹 서비스 단위 시스템은 인터넷 웹 기반으로 기상 모니터링 서비스, 과수 화상병 예측정보 모바일 서비스 그리고 전국 화상병 예측정보 모니터링 서비스를 표출한다. 마지막으로 알림 발송 단위 시스템은 농촌진흥청 화상병 예찰 및 방제 지침에 따라 K-Maryblyt 모델의 예측정보와 현장의 상황을 참고해 방제 적기 알림을 재배자들에게 전달한다. FBcastS은 4.25 km 공간간격의 조밀한 우리나라 기상관측망에서 수집한 기상정보를 활용하여 화상병 예찰 정보의 신뢰를 높일 수 있고, 인터넷 웹 기반 서비스를 제공함으로써 정보의 접근성과 활용성이 높은 클라우드 기반 스마트 농업 정보시스템이다.
Hussain, Syed Nazir;Aziz, Azlan Abd;Hossen, Md. Jakir;Aziz, Nor Azlina Ab;Murthy, G. Ramana;Mustakim, Fajaruddin Bin
Journal of Information Processing Systems
/
제18권1호
/
pp.115-129
/
2022
Adopting Internet of Things (IoT)-based technologies in smart homes helps users analyze home appliances electricity consumption for better overall cost monitoring. The IoT application like smart home system (SHS) could suffer from large missing values gaps due to several factors such as security attacks, sensor faults, or connection errors. In this paper, a novel framework has been proposed to predict large gaps of missing values from the SHS home appliances electricity consumption time-series datasets. The framework follows a series of steps to detect, predict and reconstruct the input time-series datasets of missing values. A hybrid convolutional neural network-long short term memory (CNN-LSTM) neural network used to forecast large missing values gaps. A comparative experiment has been conducted to evaluate the performance of hybrid CNN-LSTM with its single variant CNN and LSTM in forecasting missing values. The experimental results indicate a performance superiority of the CNN-LSTM model over the single CNN and LSTM neural networks.
최근 에너지 인터넷에서 지능형 원격검침 인프라를 이용하여 확보된 대량의 전력사용데이터를 기반으로 효과적인 전력수요 예측을 위해 다양한 기계학습기법에 관한 연구가 활발히 진행되고 있다. 본 연구에서는 전력량 데이터와 같은 시계열 데이터에 대해 효율적으로 패턴인식을 수행하는 인공지능 네트워크인 Gated Recurrent Unit(GRU)을 기반으로 딥 러닝 모델을 제안하고, 실제 가정의 전력사용량 데이터를 토대로 예측 성능을 분석한다. 제안한 학습 모델의 예측 성능과 기존의 Long Short Term Memory (LSTM) 인공지능 네트워크 기반의 전력량 예측 성능을 비교하며, 성능평가 지표로써 Mean Squared Error (MSE), Mean Absolute Error (MAE), Forecast Skill Score, Normalized Root Mean Squared Error (RMSE), Normalized Mean Bias Error (NMBE)를 이용한다. 실험 결과에서 GRU기반의 제안한 시계열 데이터 예측 모델의 전력량 수요 예측 성능이 개선되는 것을 확인한다.
Recently, a number of researchers have produced research and reports in order to forecast more exactly air quality such as particulate matter and odor. However, such research mainly focuses on the atmospheric diffusion models that have been used for the air quality prediction in environmental engineering area. Even though it has various merits, it has some limitation in that it uses very limited spatial attributes such as geographical attributes. Thus, we propose the new approach to forecast an air quality using a deep learning based ensemble model combining temporal and spatial predictor. The temporal predictor employs the RNN LSTM and the spatial predictor is based on the geographically weighted regression model. The ensemble model also uses the RNN LSTM that combines two models with stacking structure. The ensemble model is capable of inferring the air quality of the areas without air quality monitoring station, and even forecasting future air quality. We installed the IoT sensors measuring PM2.5, PM10, H2S, NH3, VOC at the 8 stations in Jeonju in order to gather air quality data. The numerical results showed that our new model has very exact prediction capability with comparison to the real measured data. It implies that the spatial attributes should be considered to more exact air quality prediction.
주가는 사람들의 심리를 반영하고 있으며, 주식시장 전체에 영향을 미치는 요인으로는 경제성장률, 경제지료, 이자율, 무역수지, 환율, 통화량 등이 있다. 국내 주식시장은 전날 미국 및 주변 국가들의 주가지수에 영향을 많이 받고 있으며 대표적인 주가지수가 다우지수, 나스닥, S&P500이다. 최근 주가뉴스를 이용한 주가분석 연구가 활발히 진행되고 있으며, 인공지능 기반한 분석을 통하여 과거 시계열 데이터를 기반으로 미래를 예측하는 연구가 진행 중에 있다. 하지만, 주식시장은 예측시스템에 의해서 단기간 적중이 되더라도, 시장은 더 이상의 단기 전략대로 움직여지지 않고, 새롭게 변할 수밖에 없다. 따라서, 본 모델을 삼성전자 주식데이터와 뉴스 정보를 텍스트 마이닝으로 모니터링하여 분석한 결과를 나타내어 예측이 가능한 모델을 제시하였으며, 향후 종목별 예측을 통하여 실제 예측이 정확한지 확인하여 발전시켜 나갈 예정임.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.