최근 영상 데이터의 급증으로 이를 효과적으로 처리하기 위해 객체 탐지 및 추적, 행동 인식, 표정 인식, 재식별(Re-ID)과 같은 다양한 컴퓨터비전 기술에 대한 수요도 급증했다. 그러나 객체 탐지 및 추적 기술은 객체의 영상 촬영 장소 이탈과 재등장, 오클루전(Occlusion) 등과 같이 성능을 저하시키는 많은 어려움을 안고 있다. 이에 따라 객체 탐지 및 추적 모델을 근간으로 하는 행동 및 표정 인식 모델 또한 객체별 데이터 추출에 난항을 겪는다. 또한 다양한 모델을 활용한 딥러닝 아키텍처는 병목과 최적화 부족으로 성능 저하를 겪는다. 본 연구에서는 YOLOv5기반 DeepSORT 객체추적 모델, SlowFast 기반 행동 인식 모델, Torchreid 기반 재식별 모델, 그리고 AWS Rekognition의 표정 인식 모델을 활용한 영상 분석 시스템에 단일 연결 계층적 군집화(Single-linkage Hierarchical Clustering)를 활용한 재식별(Re-ID) 기법과 GPU의 메모리 스루풋(Throughput)을 극대화하는 처리 기법을 적용한 행동 및 표정 검출용 영상 분석 시스템을 제안한다. 본 연구에서 제안한 시스템은 간단한 메트릭을 사용하는 재식별 모델의 성능보다 높은 정확도와 실시간에 가까운 처리 성능을 가지며, 객체의 영상 촬영 장소 이탈과 재등장, 오클루전 등에 의한 추적 실패를 방지하고 영상 내 객체별 행동 및 표정 인식 결과를 동일 객체에 지속적으로 연동하여 영상을 효율적으로 분석할 수 있다.
ICT(Information and Communications Technologies : 정보통신기술)는 창조경제의 핵심이 되는 기술중 하나로 기존산업과 기업의 인프라를 연결하는 매개로 사용되어 기존 상품과 서비스를 고도화하고, 새로운 상품과 서비스를 만들어내고 있다. 이와 더불어 빅데이터, 모바일, 웨어러블 등 새로운 디바이스 부문까지 주목을 받으며 신시장 개척에 귀추가 주목되고 있다. 더 나아가 IoT(Internet of Things :사물인터넷)는 인간과 인간, 인간과 사물, 사물과 사물을 연결하며 ICT기반의 사회를 더욱 곤고히 만들어 주는 역할을 하고 있다. 이는 제조업 중심의 하드웨어 개발이 소프트웨어의 개발과 함께 동시다발적으로 융합되어야 한다는 의미로 볼 수 있다. 하드웨어와 소프트웨어의 융합에서 꼭 필요한 것이 OS인데, 선두주자 구글과 애플을 필두로 관련 기업에서는 소프트웨어의 중요성을 인지하고 소프트웨어 개발에 집중 착수하였다. 이에 현 보고서(한국산업기술평가관리원: 디자인전문기술개발사업) 진행을 위해 소프트웨어 시장현황을 조사한 결과, 소프트웨어 플랫폼을 기반으로 한 구글의 안드로이드(Android)와 애플의 iOS가 전 세계시장을 장악하고 있었으며, 후발주자는 새로운 패러다임을 제시하기 위해 Web기반 OS, 유사 OS 등 을 출시하여 다양한 경로에서 시장진입을 시도하고 있다. 이러한 사회의 변화는 OS를 기본으로 누구나 개발자가 될 수 있는 스마트콘텐츠 활용에 대한 연구 필요성이 대두되었으며 범용적으로 활용할 수 있는 스마트콘텐츠에 대한 정의가 필요하며 빠른 시장변화에 대처할 수 있는 시장분석이 필요하다. 이에 본 연구에서는 문헌조사 및 스마트분류체계에 따른 앱마켓(App Market)분석, 현 콘텐츠시장 트랜드 분석을 실시하였고 스마트콘텐츠의 범용적 정의와 앱마켓에서 나타난 애플리케이션의 현황과 콘텐츠 시장현황을 비교하여 공통요소 5가지의 흐름을 파악하였다. 분석을 통하여 스마트콘텐츠 시장은 독립적이지만 서로의 연결고리를 가진 형태로 하나의 유기체와 같은 형태로 발전할 것이라 예상하였으며 기존의 기술적 관점, 문화적 관점, 비즈니스적 관점, 소비자 관점에 사회적 관점을 포함한 다시점 관점에서의 분류체계와 개발이 이루어 져야 한다.
현대사회는 정보통신기술 및 빅데이터 기술의 발전으로 누구나 인터넷을 통해 손쉽게 방대한 데이터를 얻고 활용할 수 있는 시대로, 양질의 데이터를 수집하는 능력을 넘어 수많은 정보 속에서 올바른 데이터만을 선별하는 능력이 더욱 중요해지고 있다. 이러한 기조는 학계에서도 이어지고 있는데, 축적되는 연구물 속에서 양질의 연구를 선별하여 올바른 지식구조를 형성하기 위해, 다양한 연구 분야에서 체계적 고찰(systematic review) 및 비체계적 고찰(non-systematic review)과 같은 문헌연구(literature review)가 수행되고 있다. 한편, 코로나19 팬데믹 이후 의료산업에서도 그동안 합의에 이르지 못했던 원격의료가 제한적으로나마 허용되고, 인공지능 및 빅데이터 기술이 응용된 건강추천시스템(health recommender systems: HRS)과 같은 새로운 의료서비스가 각광을 받고 있다. 하지만, 실무적으로 HRS가 미래 의료산업 발전을 이끌 중요한 기술로 평가받고 있음에도 불구하고, 학술적인 문헌연구는 다른 분야에 비해 매우 부족한 실정이다. 더불어 HRS는 학제적 성격이 강한 융합 분야임에도 불구하고, 기존의 문헌연구는 비체계적 고찰과 체계적 고찰 방법만을 주로 활용하여 이뤄졌기 때문에, 다른 연구 분야와의 상호작용이나 동적인 관계를 유추하기에는 한계가 존재한다. 이에, 본 연구에서는 인용네트워크 분석(citation network analysis: CNA)을 활용하여 HRS 및 주변 연구 분야의 전체적인 네트워크 구조를 파악하였다. 또한, 이 과정에서 최신 논문이 인용 관계가 잘 나타나지 않는 문제를 보완하기 위해 GraphSAGE 알고리즘을 적용함으로써, HRS 연구에 있어 'recommender system', 'wireless & IoT', 'computer vision', 'text mining' 등과 같은 연구 분야들의 중요도가 높아지고 있음을 파악하였으며, 이와 동시에 개인화(personalization) 및 개인정보보호(privacy) 등과 같은 새로운 키워드가 주요 이슈로 등장하고 있음을 확인하였다. 본 연구를 통해 HRS 연구 커뮤니티의 구조를 파악하고, 관련된 연구 동향을 살펴보며, 미래 HRS 연구 방향을 설계함에 있어 실질적인 통찰을 제공할 수 있을 것으로 기대한다.
집중강우 시 육상으로부터 다량으로 유입된 부유쓰레기는 사회, 경제적 및 환경적으로 부정적인 영향을 주고 있으나 부유쓰레기 집적 구간 및 발생량에 대한 모니터링 체계는 미흡한 실정이다. 최근 인공지능 기술의 발달로 드론 영상과 딥러닝 기반 객체탐지 모델을 활용하여 수계 내 광범위한 지역을 신속하고 효율적인 연구의 필요성이 요구되고 있다. 본 연구에서는 육상기인 부유쓰레기의 효율적인 탐지 기법을 제시하기 위해 드론 영상뿐만 아니라 다양한 이미지를 확보하여 You Only Look Once (YOLO)v5s와 최근에 개발된 YOLO7 및 YOLOv8s로 학습하여 모델별로 성능을 비교하였다. 각 모델의 정성적인 성능 평가 결과, 세 모델 모두 일반적인 상황에서 탐지성능이 우수한 것으로 나타났으나, 이미지의 노출이 심하거나 수면의 태양광 반사가 심한 경우 YOLOv8s 모델에서 대상물을 누락 또는 중복 탐지하는 사례가 나타났다. 정량적인 성능 평가 결과, YOLOv7의 mean Average Precision (intersection over union, IoU 0.5)이 0.940으로 YOLOv5s (0.922)와 YOLOvs8(0.922)보다 좋은 성능을 나타냈다. 데이터 품질에 따른 모델의 성능 비교하기 위해 색상 및 고주파 성분에 왜곡을 발생시킨 결과, YOLOv8s 모델의 성능 저하가 가장 뚜렷하게 나타났으며, YOLOv7 모델이 가장 낮은 성능 저하 폭을 보였다. 이를 통해 수면 위에 존재하는 부유쓰레기 탐지에 있어서 YOLOv7 모델이 YOLOv5s와 YOLOv8s 모델에 비해 강인한 모델임을 확인하였다. 본 연구에서 제안하는 딥러닝 기반 부유쓰레기 탐지 기법은 부유쓰레기의 성상별 분포 현황을 공간적으로 파악할 수 있어 향후 정화작업 계획수립에 기여할 수 있을 것으로 판단된다.
기후변화로 인한 대형 산불의 빈도가 증가함에 따라 극심한 인명 및 재산상의 피해를 초래하고 있다. 이로 인해 많은 식생이 소실되며, 그 강도와 발생 형태에 따라 생태계 변화에 영향을 끼친다. 생태계 변화는 다시 산불 발생을 유발하여 2차 피해를 야기한다. 따라서 산불 피해지에 대한 정확한 탐지 및 면적 산정의 중요성이 지속적으로 제기되고 있다. 효율적인 산불 피해지 모니터링을 위해 산불 발생 후 실시간 지형 및 기상정보는 물론 피해지역의 영상을 대규모로 취득할 수 있는 위성영상이 주로 활용되고 있다. 최근, 합성곱 신경망(convolution neural network, CNN) 기반 모델부터 고성능 트랜스포머(Transformer) 기반 모델에 이르기까지 딥러닝 알고리즘이 빠르게 발전하면서 산림원격탐사에서 이를 적용한 연구가 활발히 이루어지고 있다. 하지만 현재까지 적용된 딥러닝 모델은 제한적이며 현업에서의 합리적인 활용을 위한 정량적 성능평가에 대한 보고가 부족한 상황이다. 따라서 본 연구에서는 모델에 따른 성능향상과 데이터 설계에 따른 성능향상을 중점적으로 비교 분석하였다. 미국 캘리포니아 지역을 대상으로 CNN 기반 모델의 U-Net, High Resolution Network-Object Contextual Representation (HRNet-OCR)을 활용하여 산불 피해지 모델을 구축하였다. 또한, 기본 파장대역과 함께 식생활력도 및 지표의 수분함량 정도를 고려하고자 normalized difference vegetation index (NDVI), normalized burn ratio (NBR)와 같은 산불 관련 분광지수를 산출하여 입력 이미지로 사용하였다. U-Net의 mean intersection over union (mIoU)이 0.831, HRNet-OCR이 0.848을 기록하여 두 모델 모두 우수한 영상분할 성능을 보였다. 또한, 밴드 반사도뿐 아니라 분광지수를 추가한 결과 모든 조합에서 평가지표 값이 상승하여 분광지수를 활용한 입력 데이터 확장이 픽셀 세분화에 기여함을 확인하였다. 이와 같은 딥러닝 방법론을 발전시킨다면 우리나라의 산불 피해지에 대한 신속한 파악 및 복구 계획 수립의 기초자료로 활용될 수 있을 것으로 기대된다.
본 연구에서는 고등학교 과학 교과서에 제시된 'pH가 효소의 활성에 미치는 영향'에 대한 실험의 문제점을 분석하였다. 본 실험은 16종의 교과서 중 5개의 교과서에 소개되어 있으며, 실험 조건을 분석하였다. 교과서 분석 결과 산성 조건은 pH 3 이하이고, 염기성 조건은 pH 11이상이었다. 우선 교과서에 제시된 실험조건을 토대로 pH 조건을 다양하게 하여 실험을 실시하였다. 교과서에 제시된 것처럼 완충 용액을 사용하지 않고 pH 조건을 맞춰주었을 때, 침의 완충 작용으로 pH 범위로 pH가 맞춰지는 현상이 발견되었다. 그래서 본 연구에서는 pH 2에서 13인 완충 용액을 이용하여 효소 활성에 대한 실험을 수행하였다. pH 2에서 4사이에서 시료는 파란색을 나타내었고 pH 5부터 pH 8 에서는 색이 없어졌다. 이는 효소활성으로 인해서 녹말이 소화된 것을 나타낸다. pH가 9에서는 옅은 파란색이 나타났는데 이는 효소활성이 감소한 것을 나타낸다. 그러나 pH가 10이상으로 더 증가했을 때 효소의 비활성으로 인해 파란색이 더 짙어질 것이라는 기대와 달리, pH 10일 때 파란색이 더 옅어졌고, pH 11이상에서는 색이 없어졌다. 이는 이렇게 강한 염기성 조건에서 효소가 활성화된다고 학생들이 잘못해석하도록 영향을 미칠 수 있는 사안이다. 분석 결과 ${I_3}^-$, ${I_5}^-$는 녹말-요오드 화합물에서 녹말 나선 안에 존재하는 폴리요오드화 이온의 기초가 되며 이들이 색을 띄게 되는데, 이들이 $OH^-$와 반응하여 $I^-$, HOI, ${IO_3}^-$로 분해되기 때문으로 해석되었다.
연구배경 : 원인 미상의 미만성 폐침윤이 있는 경우, 기관지폐포세척술(bronchoalveolar lavage; BAL)이 진단에 유용하나, 심한 저산소혈증이 있는 환자에서는 수기 중 저산소혈증의 악화에 대한 우려로 BAL을 시행하지 못하거나 기관내삽관 후 시행하는 경우가 많다. 이에 저자들은 심한 저산소혈증 환자에서 BAL 시행 시 안면마스크를 통한 지속성 기도양압(continuous positive airway pressure; CPAP)을 시행하여, 이 방법의 유용성 및 안정성을 평가하기 위해서 본 연구를 시행하였다. 방법 : 2001년 1월 2000년 8월까지 삼성서울병원에 입원한 환자 중, 진단적 BAL이 필요하면서 심한 저산소혈증(안면마스크로 산소 10 L/min 공급 시 $PaO_2/F_IO_2\;ratio{\leq}200$)이 있는 환자들을 대상으로 하였다. 기존의 인공호흡기와 안면마스크를 이용하여 흡입산소분율 1.0로 CPAP $5{\sim}6cmH_2O$를 BAL 시행 10분 전부터 BAL 종료 30분 후까지 적용하였다. 기관지내시경은 T-튜브를 통해 구강으로 삽입하여 통상적인 방법으로 BAL을 시행하였다. 수기 전, 직후, 수기 후 30분, 90분과 24시간에 여러 생리학적 지표와 가스교환지표들을 측정하였다. 결과 : (1) 총 7명(남:여=4:3)의 환자를 대상으로 하였으며 연령 중앙값은 56세였다. (2) CPAP 적용 전 $PaO_2$는 $78{\pm}16mmHg$였으며 CPAP 적용 후 $269{\pm}116mmHg$으로 유의하게 증가하였으며(p=0.018) BAL시행 후와 30분 후 $PaO_2$의 유의한 감소는 관찰되지 않았다. 수기 중 $SpO_2$가 90% 미만으로 감소한 환자는 한 명도 없었다. (3) 수기 직후 $PaCO_2$의 유의한 증가, pH의 유의한 감소가 관찰되었으나 수기 후 30분만에 회복되었다. (5) 시행 중 출혈, 기흉, 감염, 혈역학적 합병증은 발생하지 않았으며, 세명의 환자(43%)에서 수기와 무관하게 기저 질환의 진행으로 기관내삽관을 필요로 하였다. 결론 : 심한 저산소혈증 환자에서 안면마스크를 이용한 CPAP을 적용하여 BAL을 시행하면, 수기 시 저산소혈증의 위험 없이 안전하게 검사를 시행할 수 있을 것으로 사료된다.
"2016 인터넷이용실태조사"에 따르면 인터넷 이용자수 및 이용률은 점점 증가하고 있으며 접속방법에 있어서는 컴퓨터보다 스마트폰을 통한 접속이 많아지고 있다. 스마트기기의 증가에 따라 초고속인터넷의 수요가 감소할 것이라는 전망도 있다. 하지만, 스마트기기의 증가에도 불구하고 기가인터넷을 통한 속도 향상과 IoT 시장의 성장으로 인해 초고속인터넷 시장은 당분간 유지될 것으로 전망된다. 시장의 포화로 인해 통신사업자들이 신규고객 확보를 위해 과도한 경쟁을 하고 있지만, 고객이탈의 원인을 알 수 있다면 보다 효과적인 마케팅을 통해 과도한 마케팅비용을 절감할 수 있을 것으로 기대된다. 본 연구에서는 통신사업자 A사가 보유하고 있는 안양시, 군포시, 의왕시 3개 도시의 결합유형별 해지 데이터와, 통계청으로부터 구한 지역별 데이터를 결합하여, 지역별 해지율과 이에 영향을 미치는 지역특성간의 관계를 분석하고자 하였다. 특히 인접지역에 따라 결합유형별 해지율의 분포에 차이가 있을 것으로 보고, 클러스터링을 이용하여 해지유형이 유사한 지역을 도출 및 분석하고자 하였다. 공간검색통계도구인 SatScan은 기존의 클러스터링 방법에 공간정보를 추가하여 인접지역을 중심으로 군집이 형성되도록 한다. 따라서 본 연구에서는 SatScan을 이용해 지역의 공간정보를 기반으로 유사지역을 군집화하고, 군집별 해지율과 지역별 데이터와의 연관성을 분석하였다. 분석 단계에서는 먼저 공간정보와 해지데이터를 결합하여 도출된 군집들의 특성을 정리하였으며, 다음으로 군집분석 결과를 바탕으로 하여 각 동의 초고속 인터넷 해지율과 지역별 데이터와의 연관성을 분산분석, 상관분석, 회귀분석을 이용하여 분석하였다. 그리고, 분석결과를 기반으로 하여 지역에 따른 적절한 마케팅 방안을 제안하였다.
오늘날 이동통신은 급증하는 데이터 수요에 대응하기 위해서 주로 속도 향상에 초점을 맞추어 발전해 왔다. 그리고 5G 시대가 시작되면서 IoT, V2X, 로봇, 인공지능, 증강 가상현실, 스마트시티 등을 비롯하여 다양한 서비스를 고객들에게 제공하기위한 노력들이 진행되고 있고 이는 우리의 삶의 터전과 산업 전반에 대한 환경을 바꿀 것으로 예상되고 되고 있다. 이러한 서비스를 제공하기위해서 고속 데이터 속도 외에도, 실시간 서비스를 위한 지연 감소 그리고 신뢰도 등이 매우 중요한데 5G에서는 최대 속도 20Gbps, 지연 1ms, 연결 기기 106/㎢를 제공함으로써 서비스 제공할 수 있는 기반을 마련하였다. 하지만 5G는 고주파 대역인 3.5Ghz, 28Ghz의 높은 주파수를 사용함으로써 높은 직진성의 빠른 속도를 제공할 수 있으나, 짧은 파장을 가지고 있어 도달할 수 있는 거리가 짧고, 회절 각도가 작아서 건물 등을 투과하지 못해 실내 이용에서 제약이 따른다. 따라서 기존의 통신망으로 이러한 제약을 벗어나기가 어렵고, 기반 구조인 중앙 집중식 SDN 또한 많은 노드와의 통신으로 인해 처리 능력에 과도한 부하가 발생하기 때문에 지연에 민감한 서비스 제공에 어려움이 있다. 그래서 자율 주행 중 긴급 상황이 발생할 경우 사용 가능한 지연 관련 트리 구조의 제어 기능이 필요하다. 이러한 시나리오에서 차량 내 정보를 처리하는 네트워크 아키텍처는 지연의 주요 변수이다. 일반적인 중앙 집중 구조의 SDN에서는 원하는 지연 수준을 충족하기가 어렵기 때문에 정보 처리를 위한 SDN의 최적 크기에 대한 연구가 이루어져야 한다. 그러므로 SDN이 일정 규모로 분리하여 새로운 형태의 망을 구성 해야하며 이러한 새로운 형태의 망 구조는 동적으로 변하는 트래픽에 효율적으로 대응하고 높은 품질의 유연성 있는 서비스를 제공할 수 있다. 이러한 SDN 구조 망에서 정보의 변경 주기, RTD(Round Trip Delay), SDN의 데이터 처리 시간은 지연과 매우 밀접한 상관관계를 가진다. 이 중 RDT는 속도는 충분하고 지연은 1ms 이하이기에 유의미한 영향을 주는 요인은 아니지만 정보 변경 주기와 SDN의 데이터 처리 시간은 지연에 크게 영향을 주는 요인이다. 특히, 5G의 다양한 응용분야 중에서 지연과 신뢰도가 가장 중요한 분야인 지능형 교통 시스템과 연계된 자율주행 환경의 응급상황에서는 정보 전송은 매우 짧은 시간 안에 전송 및 처리돼야 하는 상황이기때문에 지연이라는 요인이 매우 민감하게 작용하는 조건의 대표적인 사례라고 볼 수 있다. 본 논문에서는 자율 주행 시 응급상황에서 SDN 아키텍처를 연구하고, 정보 흐름(셀 반경, 차량의 속도 및 SDN의 데이터 처리 시간의 변화)에 따라 차량이 관련정보를 요청해야 할 셀 계층과의 상관관계에 대하여 시뮬레이션을 통하여 분석을 진행하였다.
Park, Nyeong-Soo;Shin, Dong-Woo;Lee, Ke-Ho;Ji, Geun-Eog
Journal of Microbiology and Biotechnology
/
제10권3호
/
pp.312-320
/
2000
Abstract The full sequence of the plasmid pKJ36, which was derived from Bifidobacterium longum KJ, was determined and analyzed to construct shuttle vectors between E. coli and Bifidobacterium. The plasmid pKJ36 was composed of 3,625 base pairs with a 65.1% G+C content. The structural organization of pKJ36 was highly similar to that of pKJ50, and the three major ORFs on pKJ36 showed high amino acid sequence homologies with those of pKJ50. The putative proteins coded by these three ORFs were designated as RepB (32.0 kDa, pI=9.25), MembB (29.0 kDa, pI=12.25), and MobB (39.0 kDa, pI=IO.66), respectively. The amino acid sequence of RepB showed a 57% identity and 70% similarity with that of the RepA protein of pKJ50. Upstream of the repB gene, the so-called iteron sequence was directly repeated four-and-ahalf times and a conserved dnaA box was identified. An amino acid sequence comparison between the MobB and MobA of pKJ50 revealed a 48% identity and 61 % similarity. A conserved oriT sequence with an inverted repeat identical to that of pKJ50 was also found upstream of the mobB gene. A hydropathy analysis of MembB revealed four possible transmembrane regions. The expressions of the repB and membB genes were confirmed by RT-PCR. The in vitro translation reaction of pKJ36 showed protein bands with anticipated sizes with respect to each putative gene product. S 1 endonuclease treatment and Southern hybridization suggested that pKJ36 replicates by a rolling circle mechanism via a single-stranded DNA (ssDNA) intermediate. A shuttle vector between E. coli and Bifidobacterium sp. was constructed using the pKJ36, pBR322, and staphylococcal chloramphenicol acetyl transferase (CAT) gene. The successful transformation of the Bifidobacterium strains was shown by Southern hybridization and PCR. The transformation efficiency differed from strain to strain and, depending on the electroporation conditions, with a range between $1.2{\times}10^1-2.6{\times}10^2{\;}cfu/\mu\textrm{g}$ DNA.X> DNA.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.