• Title/Summary/Keyword: INVERSE DYNAMICS

Search Result 254, Processing Time 0.026 seconds

Anomalous Propagation Characteristics of an Airy Beam in Nonlocal Nonlinear Medium

  • Wu, Yun-Long;Ye, Qin;Shao, Li
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.191-197
    • /
    • 2021
  • The anomalous propagation characteristics of a single Airy beam in nonlocal nonlinear medium are investigated by utilizing the split-step Fourier-transform method. We show that besides the normal straight propagation trajectory, the breathing solitons formed by the interaction between Airy beam and nonlocal nonlinear medium can propagate along the sinusoidal trajectory, and the anomalous trajectory can be modulated arbitrarily by altering the initial amplitude and the nonlocal nonlinear coefficient. In addition, the initial amplitude and the nonlocal nonlinear coefficient can have inverse impacts on the formation and transformation of the equilibrium state of spatial solitons, when the two parameters are larger than certain values. Therefore, the reversible transformation of the evolution dynamics of two soliton states can be realized by adjusting those two parameters properly. Finally, it is shown that the propagation properties of the solitons formed by the interaction between Airy beam and nonlocal nonlinear medium can be controlled arbitrarily, by adjusting the distribution factor and nonlocal coefficient.

Computational Cost Reduction Method for HQP-based Hierarchical Controller for Articulated Robot (다관절 로봇의 계층적 제어를 위한 HQP의 연산 비용 감소 방법)

  • Park, Mingyu;Kim, Dongwhan;Oh, Yonghwan;Lee, Yisoo
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.1
    • /
    • pp.16-24
    • /
    • 2022
  • This paper presents a method that can reduce the computational cost of the hierarchical quadratic programming (HQP)-based robot controller. Hierarchical controllers can effectively manage articulated robots with many degrees of freedom (DoFs) to perform multiple tasks. The HQP-based controller is one of the generic hierarchical controllers that can provide a control solution guaranteeing strict task priority while handling numerous equality and inequality constraints. However, according to a large amount of computation, it can be a burden to use it for real-time control. Therefore, for practical use of the HQP, we propose a method to reduce the computational cost by decreasing the size of the decision variable. The computation time and control performance of the proposed method are evaluated by real robot experiments with a 15 DoFs dual-arm manipulator.

Disturbance Observer-Based Control for 6-DOF Remotely Operated Underwater Vehicle with Model Uncertainties (모델 불확실성을 갖는 6자유도 원격조종 수중로봇의 외란 관측기 기반 제어)

  • Junsik Kim;Dongchul Lee;Youngjin Choi
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.82-87
    • /
    • 2023
  • This paper proposes a disturbance observer-based control for 6-DOF remotely operated underwater vehicles with model uncertainties. The sum of external disturbance and the forces generated from model parameters except for the inertial matrix of the hydrodynamic model is defined as a lumped disturbance in this paper. Then, the lumped disturbance caused by model uncertainties and the external forces is estimated using the disturbance observer. Fortunately, the disturbance observer is constructed as a linear form because all the elements of the inertial matrix of the hydrodynamic model are constants. To verify the proposed control scheme, we show that the actual lumped disturbance is similar to the estimated lumped disturbance obtained by the disturbance observer. Finally, the position tracking performance in the disturbance environment is confirmed through the comparative study with a traditional inverse dynamics PD controller.

Study of Effects of Measurement Errors in Damage Detection (동적 측정오차가 손상탐지에 미치는 영향에 관한 연구)

  • Kim, Ki-Ook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.218-224
    • /
    • 2011
  • A modal method is presented for the investigation of the effects of measurement errors in damage detection for dynamic structural systems. The structural modifications to the baseline system result in the response changes of the perturbed structure, which are measured to determine a unique system in the inverse problem of damage detection. If the numerical modal data are exact, mathematical programming techniques can be applied to obtain the accurate structural changes. In practice, however, the associated measurement errors are unavoidable, to some extent, and cause significant deviations from the correct perturbed system because of the intrinsic instability of eigenvalue problem. Hence, a self-equilibrating inverse system is allowed to drift in the close neighborhood of the measured data. A numerical example shows that iterative procedures can be used to search for the damaged structural elements. A small set of selected degrees of freedom is employed for practical applicability and computational efficiency.

Integral Sliding-based Dynamic Control Method using Genetic Algorithm on an Omnidirectional Mobile Robot (전방향 모바일 로봇에서 유전알고리즘을 이용한 적분 슬라이딩 기반 동적 제어 기법)

  • Park, Jin-Hyun;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1817-1825
    • /
    • 2021
  • Omnidirectional mobile robots can be mobile in any direction without changing the robot's direction, making them easy to apply in many applications and providing excellent maneuverability. Omnidirectional mobile robots have non-linear dynamic components such as friction, making them difficult to model accurately. In this paper, we linearize the mobile robot system using the mobile robot's inverse dynamics and integral sliding mode control method to remove these nonlinear components. And the position and velocity gains are optimized using a genetic algorithm to realize the optimal performance of the proposed system control method. As a result of the performance evaluation, the genetic algorithm's control method showed superior performance than the control method with an arbitrary gain. And the proposed inverse dynamic and integral sliding mode control method can be applied to other control methods. It can be beneficial for designing a linear control system.

A study on the arrangement of actuators and speaker zones of the panel speaker (패널 스피커의 가진기 및 스피커 배치에 관한 연구)

  • Jung-Han Woo;Seong-Hyun Lee;Yun-Ho Seo;Pyung-Sik Ma;Dongjoon Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.388-394
    • /
    • 2023
  • When the vibration of the thin panel by exciting single point is used to radiate sound, the inherent vibration characteristic of the plate itself causes influence on the radiated sound. A conventional panel speaker system usually uses the single or double point excitations for generating the sound through the panel itself. The radiated sound can be easily distorted due to the modal characteristics of the plate so it is difficult to expect sufficient sound power or high radiation efficiency. In this paper, to achieve an immersive sound field, the multiple speaker zones on a thin panel are created with the limited number of actuators. The designated vibration field which can generates directional sound is realized by employing the vibro-acoustic inverse rendering methods. Actuators are arranged from the positions which have the advantage of implementing with multi-modal excitations. The location and number of actuators are compared with the location and number of controllable speaker zones by conducting numerical simulations.

Methods for Measurement of Moment of Segmental Inertia Using a Dynamometer (동력계를 이용한 분절관성모멘트 측정 방법)

  • Son, J.;Kim, Y.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.156-162
    • /
    • 2013
  • Moments of inertia of limb segments are essential to calculate parameters related to the segmental rotation. To analyze the human motion accurately and specifically, moments of inertia obtained from the individual are required. In this study, a simple method to determine a subject-specific moment of segmental inertia using a dynamometer is introduced. In order to evaluate the method, one male participated to test for his forearm plus hand on a commercial dynamometer. Three passive speeds, i.e. 240, 270, and $300^{\circ}/s$, were chosen to confirm whether the moment of inertia values at each speed approach to a fixed value. The same procedure was repeated on the day after to evaluate whether the method is reproducible. As the results, there were no significant differences among the speeds and between the days. The value of the moment of the forearm inertia was 0.216 $kg{\cdot}m^2$ that is apparently higher compared to values by previous models. Nonetheless, it seems to be acceptable based on our body mass index analysis using reported subject height and mass in each previous study. According to our results, the developed method could be useful to determine the segmental moment of inertia of an individual, showing no significant differences among the speeds and between the days. Thus, we believe that our results are reliable according to two appropriate evaluation procedures. This finding would be helpful to calculate segmental rotation related parameters of an individual.

Analysis on the Kinematics and Dynamics of Human Arm Movement Toward Upper Limb Exoskeleton Robot Control - Part 2: Combination of Kinematic and Dynamic Constraints (상지 외골격 로봇 제어를 위한 인체 팔 동작의 기구학 및 동역학적 분석 - 파트 2: 제한조건의 선형 결합)

  • Kim, Hyunchul;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.875-881
    • /
    • 2014
  • The redundancy resolution of the seven DOF (Degree of Freedom) upper limb exoskeleton is key to the synchronous motion between a robot and a human user. According to the seven DOF human arm model, positioning and orientating the wrist can be completed by multiple arm configurations that results in the non-unique solution to the inverse kinematics. This paper presents analysis on the kinematic and dynamic aspect of the human arm movement and its effect on the redundancy resolution of the seven DOF human arm model. The redundancy of the arm is expressed mathematically by defining the swivel angle. The final form of swivel angle can be represented as a linear combination of two different swivel angles achieved by optimizing two cost functions based on kinematic and dynamic criteria. The kinematic criterion is to maximize the projection of the longest principal axis of the manipulability ellipsoid of the human arm on the vector connecting the wrist and the virtual target on the head region. The dynamic criterion is to minimize the mechanical work done in the joint space for each of two consecutive points along the task space trajectory. The contribution of each criterion on the redundancy was verified by the post processing of experimental data collected with a motion capture system. Results indicate that the bimodal redundancy resolution approach improved the accuracy of the predicted swivel angle. Statistical testing of the dynamic constraint contribution shows that under moderate speeds and no load, the dynamic component of the human arm is not dominant, and it is enough to resolve the redundancy without dynamic constraint for the realtime application.

Analysis on Kinematics and Dynamics of Human Arm Movement Toward Upper Limb Exoskeleton Robot Control Part 1: System Model and Kinematic Constraint (상지 외골격 로봇 제어를 위한 인체 팔 동작의 기구학 및 동역학적 분석 - 파트 1: 시스템 모델 및 기구학적 제한)

  • Kim, Hyunchul;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1106-1114
    • /
    • 2012
  • To achieve synchronized motion between a wearable robot and a human user, the redundancy must be resolved in the same manner by both systems. According to the seven DOF (Degrees of Freedom) human arm model composed of the shoulder, elbow, and wrist joints, positioning and orientating the wrist in space is a task requiring only six DOFs. Due to this redundancy, a given task can be completed by multiple arm configurations, and thus there exists no unique mathematical solution to the inverse kinematics. This paper presents analysis on the kinematic and dynamic aspect of the human arm movement and their effect on the redundancy resolution of the human arm based on a seven DOF manipulator model. The redundancy of the arm is expressed mathematically by defining the swivel angle. The final form of swivel angle can be represented as a linear combination of two different swivel angles achieved by optimizing different cost functions based on kinematic and dynamic criteria. The kinematic criterion is to maximize the projection of the longest principal axis of the manipulability ellipsoid for the human arm on the vector connecting the wrist and the virtual target on the head region. The dynamic criterion is to minimize the mechanical work done in the joint space for each two consecutive points along the task space trajectory. As a first step, the redundancy based on the kinematic criterion will be thoroughly studied based on the motion capture data analysis. Experimental results indicate that by using the proposed redundancy resolution criterion in the kinematic level, error between the predicted and the actual swivel angle acquired from the motor control system is less than five degrees.

Population Dynamics of Arisaema robustum (넓은잎천남성 (Arisaema robustum) 개체군의 동태)

  • 민병미;유진숙
    • The Korean Journal of Ecology
    • /
    • v.21 no.1
    • /
    • pp.27-33
    • /
    • 1998
  • Arisaema robustum, which has the ability to change sex, was studied in a temperate broadleaf forest of Sanseong-ri, Joongbu-myeon, Gwangju-gun, Kyonggi Province, Korea. \ulcornerThe study, carried out from 1993 to 1997, focused on population dynamics energy budget among organs, size distribution, mortality, the relationships between sex and size, seed production and germination rate. In terms of energy budget among the organs, the ratio of aboveground to belowground biomass was 36.6 : 63.4 in non-female plants, and 81.4 : 18.6 in female plants. Also, in female plants, the ration of leaf to sexual organ biomass was 39.5 : 41.9. Therefore, the belowground ratio of female plants was lower than that of non-female plants. Plants were classified into 8 levels relative to the amount of leaf area by $100cm^2$. The rates of the smallest and the largest classes were 49% and 1%, respectively, and population distribution by size was relatively stable. The mortality averaged 13.1% per year and decreased in inverse proportion to leaf size (6.6% in the smallest and 0.0% in the largest size classes). Leaf areas were $64.1{\pm}48.5cm^2$ in non-flowering plants, $232.1{\pm}123.9cm^2$ in males and $444.8{\pm}153.9cm^2$ in females. The increase rates of leaf area per year varied from 1.9% in plants changing from female tomale, to 152.4% in plants changing from non-flowering to female. But plants which remained female for 2 years showed a decrease of 34.7%. >From this result, it is thought that the female plants invest more energy to reproduction than to vegetative organs. The correlation coefficient (CC) value between plant size and the number of seeds produced (0.55) was larger than the CC value between plant size and total seed weight (0.73). That is, the larger the plant size, the heavier the seed produced. The germination rate increased along with seed weight, and it was 95% in plants which were over 60mg fresh weight/seed.

  • PDF