• Title/Summary/Keyword: INSECTS

Search Result 1,412, Processing Time 0.034 seconds

Molecular characterization and inhibition analysis of the acetylcholinesterase gene from the silkworm maggot, Exorista sorbillans

  • Lang, Guo-Jun;Zhang, Ming-Yan;Li, Bao-Ling;Yu, Lin-Lin;Lu, Xing-Meng;Zhang, Chuan-Xi
    • BMB Reports
    • /
    • v.43 no.8
    • /
    • pp.573-578
    • /
    • 2010
  • Several organophosphorus (OP) insecticides can selectively kill the silkworm maggot, Exorista sorbillans (Es) (Diptera: Tachinidae), while not obviously affecting the host (Bombyx mori) larvae, but the mechanism is not yet clear. In this study, the cDNA encoding an acetylcholinesterase (AChE) from the field Es was isolated. One point mutation (Gly353Ala) was identified. The Es-353G AChE and Es-353A AChE were expressed in baculovirus-insect cell system, respectively. The inhibition results showed that for eserine and Chlorpyrifos, Es-353A AChE was significantly less sensitive than Es-353G AChE. Meanwhile, comparison of the I50 values of eserine, dichlorvos, Chlorpyrifos and omethoate of recombinant Es AChEs with its host (Bombyx mori) AChEs indicated that, both Es AChEs are more sensitive than B. mori AChEs. The results give an insight of the mechanism that some OP insecticides can selectively kills Es while without distinct effect on its host, B. mori.

Expression of $HpaG_{Xooc}$ Protein in Bacillus subtilis and its Biological Functions

  • Wu, Huijun;Wang, Shuai;Qiao, Junqing;Liu, Jun;Zhan, Jiang;Gao, Xuewen
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.2
    • /
    • pp.194-203
    • /
    • 2009
  • $HpaG_{Xooc}$, from rice pathogenic bacterium Xanthomonas oryzae pv. oryzicola, is a member of the harpin group of proteins, eliciting hypersensitive cell death in non-host plants, inducing disease and insect resistance in plants, and enhancing plant growth. To express and secret the $HpaG_{Xooc}$ protein in Bacillus subtilis, we constructed a recombinant expression vector pM43HF with stronger promoter P43 and signal peptide element nprB. The SDS-PAGE and Western blot analysis demonstrated the expression of the protein $HpaG_{Xooc}$ in B. subtilis. The ELISA analysis determined the optimum condition for $HpaG_{Xooc}$ expression in B. subtilis WBHF. The biological function analysis indicated that the protein $HpaG_{Xooc}$ from B. subtilis WBHF elicits hypersensitive response(HR) and enhances the growth of tobacco. The results of RT-PCR analysis revealed that $HpaG_{Xooc}$ induces expression of the pathogenesis-related genes PR-1a and PR-1b in plant defense response.

The Effect of Stream Anion and River-Bed Materialson Aquatic Insects (계류수의 음이온과 하상재료가 수서곤충에 미치는 영향)

  • Seo, Mun Won;Chun, Kun-Woo
    • Journal of Forest and Environmental Science
    • /
    • v.15 no.1
    • /
    • pp.89-97
    • /
    • 1999
  • This study was carried out to obtain basic data on the kinds of aquatic insects and their living conditions in the mountain stream. The investigation was done in Bongmyung stream. Experimental Forest, Kangwon National University on aquatic insects, anions and river-bed materials. The results are as follows. 1. At every plot surveyed, diversity index, richness index and evenness index of aquatic insects appeared higher at upper stream than at lower stream in erosion control dam. 2. Anion concentrations were almost the same in plots A, B, C, D and E, but plot F at the lower stream showed 1.5 to 89 times higher concentration than the others. 3. In river-bed materials analysed, particle diameter was bigger at the upper stream than at the lower stream. At the down stream of erosion control dam showed high pebble composition ratio. 4. The number of aquatic insects showed the negative relation with the anion concentration and the positive one with the size of river-bed materials. Especially, they were affected much by the distribution chart of boulder.

  • PDF

Comparative Analysis of Nucleotide Sequence and Codon Usage of Arylphorin Gene Cloned from Four Silk-Producing Insects and Their Molicular Phylogenetics

  • Lee, Sang-Mong;Hwang, Jae-Sam;Lee, Jin-Sung;Goo, Tae-Won;Kwon, O-Yu;Kim, Ho-Rak
    • Journal of Life Science
    • /
    • v.9 no.1
    • /
    • pp.84-89
    • /
    • 1999
  • To determine phylogenetic relatedness of four silk-producing silkmoths (B. mori, B. mandarina, A. yamamai and A. pernyi), internal coding region of arylphorin which is a storage protein in hemolymph protein of insects were amplified by polymerase chain reaction and then sequenced and compared each other. The nucleotide composition was biased toward adenine and thymine(59% A+T) and a strong bias for use of C in the third position of codons was found for Phe and Tyr. Together TTC(Phe) and TAC(Tyr) account for about 16.8% (10 for TTC and 8 for TAC) of all codon usage. The nucleotide similarity of arylphorin gene from B. mori showed 99%, 98% and 97% homology with those of B. mandarina, A. yamamai and A. pernyi, respectively. Also, the nucleotide sequence of arylphorin gene from B. mandarina showed 98% and 97% homology with those of A. yamamai and A.pernyi, respectively. Between A. yamamai and A. pernyi, the sequence homology was 97%. The deduced amino acid sequences in B. mori, B. mandarina and A. yamamai showed almost 99% homology. Although the aryphorin gene provided insufficient variability among the four insect species, A UPGMA tree is generated that supported the monophyly of silk-producing insects, with M. sexta placed basal to it. It is suggest that silk-producing insects have a close relationship and a homogeneous genetic background from comparison with those of other insects.

  • PDF

A Greenhouse, Diseases and Insects Monitoring System based on PDA for Mobile Users (모바일 사용자를 위한 PDA 기반의 온실 및 병해충 모니터링 시스템)

  • Sim, Chun-Bo;Lim, Eun-Cheon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2315-2322
    • /
    • 2008
  • The requesting a consultation of the farm manager is about the diagnosis and prevention of the breeding and extermination for diseases and insects in greenhouse, the managing problem for diseases and insects turn up a main issue. To solve these problems, this paper proposes a PDA based greenhouse, diseases and insects management system for mobile(GDIMS) uses as keeping up with ubiquitous time, which makes prediction and management for diseases and insects more efficiently checked at any time and anywhere you want to, and go well with the motto of ubiquitous. This system is using the environmental data from the greenhouse attached sensors provide the accurate diagnosis and recipes, which supports to product clean crops. There are no need to visit the greenhouse because our system is based on mobile devices that obtain the information in the greenhouse, which makes management in efficient with little number of people. This wort builds simply virtual greenhouse model that assembles system component of environmental sensor for performance analysis and offers a PDA view of the greenhouse status.

Nutritional composition of various insects and potential uses as alternative protein sources in animal diets

  • Shah, Assar Ali;Totakul, Pajaree;Matra, Maharach;Cherdthong, Anusorn;Hanboonsong, Yupa;Wanapat, Metha
    • Animal Bioscience
    • /
    • v.35 no.2_spc
    • /
    • pp.317-331
    • /
    • 2022
  • The aim of the present investigation is to determine the nutritional composition of various insects and their potential uses as alternative protein sources in animal diets. The feeding industry requires production systems that use accessible resources, such as feed resources, and concentrates on the potential impacts on production yield and nutritional quality. Invertebrate insects, such as black soldier flies, grasshoppers, mealworms, housefly larvae, and crickets, have been used as human food and as feed for nonruminants and aqua culture while for ruminants their use has been limited. Insects can be mass-produced, participating in a circular economy that minimizes or eliminates food- and feed-waste through bioconversion. Although the model for formula-scale production of insects as feed for domestic animals has been explored for a number of years, significant production and transformation to being a conventional protein resource remains to be deeply investigated. This review will focus on the nutritional composition of various insects and their potential use as alternative protein sources, as well as their potential use to promote and support sustainable animal production. Furthermore, nutritional compositions, such as high protein, lauric acid omega 6, and omega 3, and bioactive compounds, such as chitin, are of great potential use for animal feeding.

Application of Edible Insects as Novel Protein Sources and Strategies for Improving Their Processing

  • Kim, Tae-Kyung;Cha, Ji Yoon;Yong, Hae In;Jang, Hae Won;Jung, Samooel;Choi, Yun-Sang
    • Food Science of Animal Resources
    • /
    • v.42 no.3
    • /
    • pp.372-388
    • /
    • 2022
  • Insects have long been consumed by humans as a supplemental protein source, and interest in entomophagy has rapidly increased in recent years as a potential sustainable resource in the face of environmental challenges and global food shortages. However, food neophobia inhibits the widespread consumption of edible insects, despite their high nutritional and functional value. The own characteristics of edible insect protein such as foaming properties, emulsifying properties, gelling properties and essential amino acid ratio can be improved by drying, defatting, and extraction. Although nutritional value of some protein-enriched bread, pasta, and meat products, especially essential amino acid components was increased, replacement of conventional food with edible insects as a novel food source has been hindered owing to the poor cross-linking properties of edible insect protein. This deterioration in physicochemical properties may further limit the applicability of edible insects as food. Therefore, strategies must be developed to improve the quality of edible insect enriched food with physical, chemical, and biological methods. It was presented that an overview of the recent advancements in these approaches and highlight the challenges and prospects for this field. Applying these strategies to develop insect food in a more familiar form can help to make insect-enriched foods more appealing to consumers, facilitating their widespread consumption as a sustainable and nutritious protein source.

Distribution Patterns of Intrinsic Optimal Temperature, Optimal Development Temperature and Optimal Fecundity Temperature by Classification Group of Insects and Mites (곤충과 응애의 분류군별 공통고유최적온도, 발육최적온도 및 산란최적온도의 분포 양상)

  • Ahn, Jeong Joon;Choi, Kyung San
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.165-172
    • /
    • 2022
  • Insects have evolved successfully by adapting to their environments through development and reproduction. Temperature-dependent models have been used to calculate the intrinsic optimal, optimal development, and optimal fecundity temperatures of insects and mites; for this study, we reviewed 112 works that focused on these parameters. The insects and mites investigated in this study include 14 Acari, 8 Coleoptera, 5 Diptera, 31 Hemiptera, 7 Hymenoptera, 18 Lepidoptera, 1 Orthoptera, 5 Psocoptera, and 5 Thysanoptera species. The results of this study showed that the interval distance between the intrinsic optimal and optimal fecundity temperatures was smaller than that between the intrinsic optimal and optimal development temperatures of the all insects and mites investigated except for those in the order Thysanoptera. We found that there is a close relationship between the intrinsic optimal and optimal fecundity temperatures.

Species diversity, relative abundance, and decline of flying insects in a fragmented forest in Futa Akure, Ondo State, Nigeria

  • Temitope A. Olatoye;Ohseok, Kwon;Kayode L. Akinwande
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.5 no.1
    • /
    • pp.10-20
    • /
    • 2024
  • The study investigated species diversity, relative abundance, and decline of flying insects and plants within a fragmented forest in the Federal University of Technology Akure (FUTA), Ondo State, Nigeria. It is known that habitat fragmentation can reduce biodiversity. Thus, it is important to perform comprehensive assessments to understand implications of the habitat fragmentation for flora and fauna. Species richness and abundance of flying insects and plants across fragmented forest patches were quantified using field surveys and taxonomic identification. This study revealed shifts in species diversity, with fragmented areas exhibiting reduced biodiversity compared to contiguous forest ecosystems. Flying insects crucial for ecosystem functioning and pollination services demonstrated decreased species richness and relative abundance within fragmented habitats. This decline was attributed to habitat loss, altered microclimates, and limited movement pathways known to hinder insect dispersal. Similarly, plant species richness and abundance showed decline in fragmented forest due to disrupted mutualistic interactions with pollinators, altered nutrient cycling, and increased competition among plant species. This study underscores the importance of maintaining intact forest habitats to sustain healthy ecosystems and preserve biodiversity. Effective conservation strategies should focus on habitat connectivity, reforestation efforts, and protection of essential ecological corridors to mitigate effects of fragmentation. In conclusion, this investigation provides empirical evidence for effects of habitat fragmentation on flying insects and plants in a forest ecosystem in FUTA Akure, Nigeria. Findings emphasize an urgency of adopting conservation measures to safeguard these invaluable components of biodiversity and ecosystem stability in the face of ongoing habitat loss and fragmentation.

Study on the Oxidative and Microbial Stabilities of Four Edible Insects during Cold Storage after Sacrificing with Blanching Methods (블랜칭법으로 희생한 4종 식용 곤충의 냉장 저장 중 산화 안정성)

  • Son, Yang-Ju;Ahn, Whee;Kim, Soo-Hee;Park, Hyo-Nam;Choi, Soo-Young;Lee, Dong-Gue;Kim, An-Na;Hwang, In-Kyeong
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.6
    • /
    • pp.849-859
    • /
    • 2016
  • Edible insects have gained recognition worldwide as complementary protein sources. Recently, four edible insects were newly allowed to be used as food materials in Korea: the mealworm (Tenebrio molitor), the cricket (Velarifictorus asperses), the white-spotted flower chaffer beetle larva (Protaetia brevitarsis seulensis), and the rhinoceros beetle larva (Allomyrina dichotoma). In this study, we evaluated the oxidative stabilities of these four edible insects during cold storage. The insects were sacrificed by blanching for 3 minutes in boiling water. The blanched insects were then stored at $4^{\circ}C$ in an incubator for 42 days. The color values, titratable acidity, peroxide values, acid values, TBARS, contents of VBN, and total plate counts of the insects were measured at days 0, 2, 4, 7, 10, 14, 21, 28, 35, and 42, respectively. Blanching decreases oxidative stresses during storage. At day 0, the white-spotted flower chaffer beetle larva showed the highest values for acid value, TBARS, VBN, and microbial counts. Most of the oxidative indicators were significantly changed at day 14 in all four insects, possibly related with the growth on all microbial plates. Based on microbial safety and the oxidative stabilities of lipids and proteins, optimal storage conditions for the cricket, the white-spotted flower chaffer beetle larva, and the rhinoceros beetle larva were 10~14 days at $4^{\circ}C$. Likewise, the mealworm showed rapid oxidation after day 14, but poor qualities were not observed until day 28.