• Title/Summary/Keyword: INS/GPS integration system

Search Result 75, Processing Time 0.03 seconds

GPS/GF-INS Integrated Navigation System with High Rate Position, Velocity, and Attitude Aiding of GPS

  • Son, Jae Hoon;Oh, Sang Heon;Hwang, Dong-Hwan
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.2
    • /
    • pp.59-70
    • /
    • 2022
  • In this paper, a GPS/GF-INS integrated navigation system is proposed, in which the high rate attitude aiding signal, the high rate position and velocity aiding of GPS receiver is used for the cube structure of the GF-IMU, effectiveness of the proposed GPS/GF-INS integrated navigation system was shown when the vehicle follows two trajectories, circling and spiraling. Performance evaluation results show that the proposed GPS/GF-INS integrated navigation method gives better navigation outputs when the attitude output of GPS is used and more better navigation outputs are obtained when the rate of GPS aiding signal is higher.

A Study on GPS/INS Integration Considering Low-Grade Sensors (저급 센서를 고려한 GPS/INS 결합기법 연구)

  • Park, Je Doo;Kim, Minwoo;Lee, Je Young;Kim, Hee Sung;Lee, Hyung Keun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.140-145
    • /
    • 2013
  • This paper proposes an efficient integration method for GPS (Global Positioning System) and INS (Inertial Navigation System). To obtain accuracy and computational conveniency at the same time with low cost global positioning system receivers and micro mechanical inertial sensors, a new mechanization method and a new filter architecture are proposed. The proposed mechanization method simplifies velocity and attitude computation by eliminating the need to compute complex transport rate related to the locally-level frame which continuously changes due to unpredictable vehicle motions. The proposed filter architecture adopts two heterogeneous filters, i.e. position-domain Hatch filter and velocity-aided Kalman filter. Due to distict characteristics of the two filters and the distribution of computation into the two hetegrogeneous filters, it eliminates the cascaded filter problem of the conventional loosly-coupled integration method and mitigates the computational burden of the conventional tightly-coupled integration method. An experiment result with field-collected measurements verifies the feasibility of the proposed method.

Van Test for GAK NM (GPS Adapter Kit Navigation Module) Using High Performance INS (고정밀 INS를 이용한 GAK(GPS Adapter Kit) 항법 모듈의 차량 시험)

  • Oh, Sang-Heon;Son, Seok-Bo;Kwon, Seung-Bok;Shin, Don-Ho;Lee, Sang-Jeong;Park, Chan-Sik;Hwang, Dong-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.260-267
    • /
    • 2007
  • GPS adapter kit (GAK) is a GPS/INS guided range extension system to improve the accuracy and availability of existing dumb bombs. In this paper, a van test result of GPS/INS navigation module (NM) for guided bomb with GAK has been presented. The NM consists of a commercial MEMS IMU, embedded GPS receiver and navigation computer unit (NCU). The GPS receiver of NM was designed to use multiple antennas for satellite visibility and GPS attitude determination. The real-time navigation software was designed by modularized structure to guarantee the maintainability and extensibility. In order to evaluate the performance of the NM, a van test was preformed by using a high performance INS - Honeywell H-726 MAPS(Modular Azimuth Position System).The van test results show that the GAK NM with GPS attitude measurement gives better navigation performance than a conventional GPS/INS integration and good coasting capabilities under jamming environment.

Cycle Slip Detection and Ambiguity Resolution for High Accuracy of an Intergrated GPS/Pseudolite/INS System

  • PARK, Woon-Young;LEE, Hung-Kyu;LEE, Jae-One
    • Korean Journal of Geomatics
    • /
    • v.3 no.2
    • /
    • pp.129-140
    • /
    • 2004
  • This paper addresses solutions th the challenges of carrier phase integer ambiguity resolution and cycle slip detection/identification, for maintaining high accuracy of an integrated GPS/Pseudolite/INS system. Such a hybrid positioning and navigation system is an augmentation of standard GPS/INS systems in localized areas. To achieve the goal of high accuracy, the carrier phase measurements with correctly estimated integer ambiguities must be utilized to update the system integration filter's states. The contribution presents an effective approach to increase the reliability and speed of integer ambiguity resolution through using pseudolite and INS measurements, with special emphasis on reducing the ambiguity search space. In addition, an algorithm which can effectively detect and correct the cycle slips is described as well. The algorithm utilizes additional position information provided by the INS, and applies a statistical technique known as th cumulative-sun (CUSUM) test that is very sensitive to abrupt changes of mean values. Results of simulation studies and field tests indicate that the algorithms are performed pretty well, so that the accuracy and performance of the integrated system can be maintained, even if cycle slips exist in the raw GPS measurements.

  • PDF

4S-Van Design for Application Environment

  • Lee, Seung-Yong;Kim, Seong-Baek;Lee, Jong-Hun
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.106-110
    • /
    • 2002
  • 4S-Van is being developed in order to provide the spatial data rapidly and accurately. 4S-Van technique is a system for spatial data construction that is heart of 4S technique. Architecture of 4S-Van system consists of hardware integration part and post-processing part. Hardware part has GPS, INS, color CCD, camera, B/W CCD camera, infrared rays camera, and laser. Software part has GPS/INS integration algorithm, coordinate conversion, lens correction, camera orientation correction, and three dimension position production. In this paper, we suggest that adequate 4S-Van design is needed according to application environment from various test results.

  • PDF

Performance Investigation of the Unscented Kalman Filter for Ultra-tightly GPS/INS Integration (GPS/INS 초강결합 기법에 대한 UKF의 성능분석)

  • Cho, Young-Seok;Yang, Cheol-Kwan;Park, Jin-Woo;Shim, Duk-Sun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.817-823
    • /
    • 2007
  • GPS and INS can be integrated in 3 ways of loose, tight, and ultra-tight configuration. This paper investigates the performance of GPS/INS ultra-tightly integrated system when unscented Kalman filter(UKF) is adopted as well as extended Kalman filter(EKF). Covariance analysis is performed using UFK and EKF for tightly coupled and ultra-tightly coupled systems. Various trajectories such as straight, circle, S-shape, spiral are considered for the simulations of covariance analysis.

Design of an Adaptive Filter for GPS/GLONASS Aided Inertial Navigation System (GPS/GLONASS 보정 관성항법시스템의 적응필터 설계)

  • 박흥원;제창해;정태호;박찬빈
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.201-210
    • /
    • 1998
  • Inertial Navigation System(INS) can provide the vehicle position and velocity information using inertial sensor outputs without the use of external aids. Unfortunately INS navigation error increases with time due to inertial sensor errors, and therefore it is desirable to combine INS with external aids such as GPS, TACAN, OMEGA, and etc.. In this paper we propose an integration algorithm of commercial GPS/GLONASS and INS where an adaptive filter for signal processing of GPS/GLONASS receiver and the 12th order Kalman filter for aided strapdown INS(SDINS) we employed. Simulation results show that the proposed adaptive filter can effectively remove a randomly occurring abrupt jump due to sudden corruption of the received satellite signal and that the Kalman filter performs satisfactorily.

  • PDF

An Attitude Determination GPS and INS Integration Scheme: Design and Flight Experiment (자세측정용 GPS/INS 통합시스템 구성 및 비행 시험)

  • Kim, Jeong Won;Hwang, Dong-Hwan;Lee, Sang Jeong;Park, Chansik;Oh, Sang Heon;Kim, Se Hwan;Ahn, Lee-Ki;Lee, Jang-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.2
    • /
    • pp.112-119
    • /
    • 2004
  • This paper proposes an attitude determination GPS/INS integrated system scheme for a UAV and presents experimental flight test results. The proposed system is designed as a part of an autopilot system and comprises a GPS attitude determination receiver, an off-the-shelf inertial measurement unit (IMU), and a navigation computer unit (NCU). UAV requires accurate attitude information for stable automatic flight control. The proposed system can provide accurate attitude information for the flight control computer (FCC) so that stable automatic flight control can be achieved. In order to verify the performance of the proposed scheme, an integrated navigation system has been developed. In order to evaluate the developed navigation system, the flight test has been performed. In the flight test, the developed system was shown to provide the position, the velocity and the attitude satisfactorily enough for stable flight control. The accuracy of the attitude information of the developed system was confirmed by comparing attitude of vertical gyro.

  • PDF

GPS/INS Integrated Navigation Systems Design for Spinning Smart Munitions (회전하는 지능 포탄의 GPS/INS 통합 항법 시스템 설계)

  • Kim, Jeong-Won;Kang, Hee-Won;Jeong, Ho-Cheol;Hwang, Dong-Hwan;Lee, Sang-Jeong;Lee, Tae-Gyoo;Song, Ki-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.615-621
    • /
    • 2009
  • Since GPS receivers and INS algorithms do not work properly in the spinning vehicles due to change of the GPS signal and excess of the measurement limitation of the gyroscope, conventional GPS/INS integrated navigation systems do not provide accurate navigation outputs. This paper proposes a design method for GPS/INS integrated navigation systems of spinning vehicles. A special GPS receiver with a signal tracking loop for changed GPS signal caused by spinning and an INS with a roll estimation method are configured and the conventional integration filter is combined. The proposed method was verified through comparison of the navigation results. The result of the proposed method for the spinning vehicle was similar to that of the conventional navigation system without spinning.

Carrier Phase-Based Gps/Pseudolite/Ins Integration: Solutions Of Ambiguity Resolution And Cycle Slip Detection/Identification

  • Park, Woon-Young;Lee, Hung-Kyu;Park, Suk-Kun;Lee, Hyun-Jik
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.02a
    • /
    • pp.82-94
    • /
    • 2004
  • This paper addresses solutions to the challenges of carrier phase integer ambiguity resolution and cycle slip detection/identification, for maintaining high accuracy of an integrated GPS/Pseudolite/INS system. Such a hybrid positioning and navigation system is an augmentation of standard GPS/INS systems in localized areas. To achieve the goal of high accuracy, the carrier phase measurements with correctly estimated integer ambiguities must be utilized to update the system integration filter's states. The occurrence of a cycle slip that is undetected is, however, can significantly degrade the filter's performance. This contribution presents an effective approach to increase the reliability and speed of integer ambiguity resolution through using pseudolite and INS measurements, with special emphasis on reducing the ambiguity search space. In addition, an algorithm which can effectively detect and correct the cycle slips is described as well. The algorithm utilizes additional position information provided by the INS, and applies a statistical technique known as the cumulative-sum (CUSUM) test that is very sensitive to abrupt changes of mean values. Results of simulation studies and field tests indicate that the algorithms are performed pretty well, so that the accuracy and performance of the integrated system can be maintained, even if cycle slips exist in the raw GPS measurements.

  • PDF