• Title/Summary/Keyword: INDEX OF SPECIES DIVERSITY

Search Result 823, Processing Time 0.023 seconds

Vegetation Structure and Management Planning of Yongha Gugok in Woraksan National Park (월악산국립공원 용하구곡의 식생구조 및 관리방안)

  • Back, Seung-Jun;Kang, Hyun-Kyung;Kim, Sun-Hwa
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.4
    • /
    • pp.487-497
    • /
    • 2013
  • This study was conducted to suggest vegetation management plan for Gugok landscape maintenance and improvement by deducing the vegetation landscape factors inherent in Yongha Gugok and understanding vegetation structure through the investigate of existing vegetation and plant community structure of Yongha valley in Woraksan National Park. There were broad and flat rocks, natural layered stones, clear water, light stones, stream, valleys, waterfalls, Pinus densiflora and Acer pseudosieboldianum as a result of deducing natural factors on poetry. There were P. densiflora and A. pseudosieboldianum appeared as one of main vegetation landscape elements. The actual vegetation analysis results were as followed. The natural vegetation occupied 67.5% and it was classified as P. densiflora community, Quercus variabilis community, Q. variabilis-P. densiflora community, Q. variabilis-Q. serrata community, Q. serrata community, Q. mongolica community, Q. mongolica-P. densiflora community, Deciduous broad-leaved tree community. The artificial vegetation(18.7%) was classified as Q. serrata community-Larix kaempferi community, Q. mongolica- Castanea crenata community, L. kaempferi community, L. kaempferi-C. crenata community, fruticeta, L. kaempferi-Q. mongolica community. The grassland area(2.0%) was classified as Miscanthus sinensis community, Phragmites communis community, and other areas were classified as landscape tree planting area, farm, orchard, residential area. The representative vegetation were P. densiflora community, Q. variabilis-Q. serrata community, L. kaempferi community, Deciduous broad-leaved tree community in Yongha Gugok. The species diversity index of Shannon was 0.6274~0.9908 on the whole. Yongha Gugok, as a symbol of succession on confucianism and reverence for nature, should be preserved natural valley landscape being clean and wijungchuksa at the end of Joseon Dynasty and Japanese Colonial era. In this historical and cultural Gugok, vegetation landscape management plan is needed to landscape maintenance with P. densiflora community, density control with L. kaempferi community. And it is considered when natural disasters and artificial damages happened, P. densiflora-oriented vegetation restoration plan should be applied in order to restore.

An Approach to Enhance the Unfair Area in the Rural Landscape (농촌 조건불리지역의 경관개선을 위한 접근)

  • Jang, Gab-Sue;Park, In-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.36 no.2
    • /
    • pp.60-68
    • /
    • 2008
  • Three land-use limitations including water hazard, soil erosion and fallow potential were evaluated to define an unfair area. Landscape indices in the unfair areas, defined by evaluations before and after landscape enhancement, were computed by Fragstats v3.3 and compared in order to propose a landscape enhancement plan. The results are as follows: First, as a result of the land evaluation, 388.56ha was analyzed for the 1st class(S1), 623.25ha for the 2nd class(S2), 138.08ha(S3s: 82.47ha, S3e: 51.88ha) for the 3rd class(S3), 230.44ha(N1w: 194.91ha, N1e: 23.09ha, N1es: 13.94ha) for the 4th class(N1), and 67.91ha(N2w: 60. 89ha, N2es: 7.02ha) for the 5th class(N2). The classes under the 3rd class(including the 3rd class) were determined as an unfair area, and proposed landscape enhancement for them. Second, it was proposed that unfair areas with potential water hazards(N1 w, N2w) be restored as a wetland and buffer zone. At this point, the farmers owning these fields could be compensated using the direct payment for landscape conservation(DPLC). Areas witha relatively lower slope(S3e) or a steep slope(N1e) containing soil erodibility potential were proposed to be restored as a sod-culture-applied field and substitute vegetation or potentially natural vegetation, respectively. The unfair areas having fallow potential(S3s, N1es, N2es) were proposed to apply special use crops for the S3s fields, native plants for the N1es fields, and intended fallow for the N2es fields. Third, after landscape enhancement, theforest had higher values in the indices of NP, PLAND, LSI, IJI, and TCA, while paddy and upland had lower values in most indices except NP and LSI. The forest patches increased and were more plentiful with their restoration and had much greater possibility to join with nearby patches. With continued restoration, forest patches will have a large core area and small number of patches due to the conglomeration of patches, which positively influences the species of diversity in the forest patches.

Studies on the Natural Distribution and Ecology of Ilex cornuta Lindley et Pax. in Korea (호랑가시나무의 천연분포(天然分布)와 군낙생태(群落生態)에 관한 연구(研究))

  • Lee, Jeong Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.62 no.1
    • /
    • pp.24-42
    • /
    • 1983
  • To develop Ilex cornuta which grow naturally in the southwest seaside district as new ornamental tree, the author chose I. cornuta growing in the four natural communities and those cultivated in Kwangju city as a sample, and investigated its ecology, morphology and characteristics. The results obtained was summarized as follows; 1) The natural distribution of I. cornuta marks $35^{\circ}$43'N and $126^{\circ}$44'E in the southwestern part of Korea and $33^{\circ}$20'N and $126^{\circ}$15'E in Jejoo island. This area has the following necessary conditions for Ilex cornuta: the annual average temperature is above $12^{\circ}C$, the coldness index below $-12.7^{\circ}C$, annual average relative humidity 75-80%, and the number of snow-covering days is 20-25 days, situated within 20km of from coastline and within, 100m above sea level and mainly at the foot of the mountain facing the southeast. 2) The vegetation in I. cornuta community can be divided that upper layer is composed of Pinus thunbergii and P. densiflora, middle layer of Eurya japonica var. montana, Ilex cornuta and Vaccinium bracteatum, and the ground vegetation is composed of Carex lanceolata and Arundinella hirta var. ciliare. The community has high species diversity which indicates it is at the stage of development. Although I. cornuta is a species of the southern type of temperate zone where coniferous tree or broad leaved, evergreen trees grow together, it occasionally grows in the subtropical zone. 3) Parent rock is gneiss or rhyolite etc., and soil is acidic (about pH 4.5-5.0) and the content of available phosphorus is low. 4) At maturity, the height growth averaged $10.48{\pm}0.23cm$ a year and the diameter growth 0.43 cm a year, and the annual ring was not clear. Mean leaf-number was 11.34. There are a significant positive correlation between twig-elongation and leaf-number. 5) One-year-old seedling grows up to 10.66 cm (max. 18.2 cm, min. 4.0 cm) in shoot-height, with its leaf number 12.1 (max. 18, min), its basal diameter 2.24 mm (max. 4.0 mm, min. 1.0 mm) and shows rhythmical growth in high temperature period. There were significant positive correlations between stalk-height and leaf-number, between stalk-height and basal-diameter, and between number and basal diameter. 6) The flowering time ranged from the end of April to the beginning of May, and the flower has tetra-merouscorella and corymb of yellowish green. It has a bisexual flower and dioecism with a sexual ratio 1:1. 7) The fruit, after fertilization, grows 0.87 cm long (0.61-1.31 cm) and 0.8 cm wide (0.62-1.05 cm) by the beginning of May. Fruits begin to turn red and continue to ripen until the end of October or the beginning of November and remain unfading until the end of following May. With the partial change in color of dark-brown at the beginning of the June fruits begin to fall, bur some remain even after three years. 8) The seed acquision ratio is 24.7% by weight, and the number of grains per fruit averages 3.9 and the seed weight per liter is 114.2 gram, while the average weight of 1,000 seeds is 24.56 grams. 9) Seeds after complete removal of sarcocarp, were buried under ground in a fixed temperature and humidity and they began to develop root in October, a year later and germinated in the next April. Under sunlight or drought, however, the dormant state may be continued.

  • PDF