• 제목/요약/키워드: IN718

검색결과 874건 처리시간 0.025초

실험계획법을 이용한 Inconel 718의 효율적인 드릴링을 위한 드릴 형상 개선에 관한 연구 (A Study on Improved Drill Shape for Efficient Drilling of Inconel 718 Using the Design of Experiment)

  • 김도혁;박기범;조영태;정윤교
    • 한국정밀공학회지
    • /
    • 제34권3호
    • /
    • pp.161-166
    • /
    • 2017
  • Inconel 718, a typical ultraheat-resistant alloy, is recognized as a useful component in aircraft parts owing to its high-temperature strength and good chemical stability. Although many studies have been conducted to determine the proper drill shape to overcome the poor machinability when drilling into Inconel 718, most have involved a cutting process program known as AdvantEdge, as an experimental approach requires much time and money. In this study, our purpose is to optimize the drill shape for efficient drilling by conducting a trust force and temperature analysis using AdvantEdge. In order to achieve this purpose, the reliability of the results of the analysis was verified and by applying design of experiment an analysis of the geometric parameters of the drill shape considering the thrust force and temperature was conducted.

Ramjet 고속 추진체용 Alloy 718 합금 노즐 단조품 개발 (Development of Alloy 718 Nozzle for Ramjet Propulsion Component)

  • 박노광;김정한;김남용;이채훈;염종택;홍재근;백동규;최성규
    • 한국군사과학기술학회지
    • /
    • 제11권4호
    • /
    • pp.76-82
    • /
    • 2008
  • Alloy 718 nozzle component was manufactured by hot forging and electron beam welding process. In this process, 718 billets produced in domestic company were used and evaluated. Before performing industrial scale hot forging, small size hot compression tests were carried out under various process conditions and then microstructural evaluations were analyzed. Using the results, FEM simulations were performed in order to optimize the hot working process. After hot working, forged work-pieces were machined and welded by electron beam. Final nozzle components were heat treated and their microstructure and mechanical properties were investigated.

박격포 포신 제작을 위한 Inconel718 소재의 전진 유동성형 조건 선정에 관한 연구 (A Study on the Selection of Forward Flow Forming Conditions with Inconel718 Tube for Mortar Barrel Manufacturing)

  • 고세권;조영태
    • 한국기계가공학회지
    • /
    • 제18권8호
    • /
    • pp.51-59
    • /
    • 2019
  • Flow forming is an eco-friendly and high-efficiency plastic deformation process with fewer chips during a process which is specifically used to manufacture seamless tubular products like tire wheels, rocket motor cases etc. On the development of mortar barrel using Inconel718 tube, some flow formed products had dimensional errors on their thickness. In this study, our purpose is to optimize the process conditions with the smallest dimensional error. In order to find an optimum process condition, 2D axisymmetric FEM simulation analyses with Taguchi method were conducted. Geometric variables (attack angle, flatting angle, roller nose radius) and operating parameters (depth of forming, feed rate) are considered as control factors. Forward flow forming with single roller was first analyzed to determine the effective factors using AFDEX software and attack angle of the roller was identified as the most influential factor. Also, the nose radius of the rollers was confirmed as a significant factor in multi-rollers flow forming system. The effect of rollers offset values are also studied and finally, we proposed optimal conditions to improve the accuracy of flow forming process with Inconel718 tube for mortar barrel manufacturing.

고속 추진체용 Alloy 718 노즐 단조품 개발 (Development of Alloy 718 Nozzle for Jet Propulsion Component)

  • 김정한;김남용;염종택;홍재근;박노광
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.39-42
    • /
    • 2008
  • Alloy 718 nozzle component was manufactured by hot working and electron beam welding process. In this process, domestic 718 materials were applied and evaluated. Hot compression tests were carried out at a lot of process conditions and microstructural evaluation was investigated. Using the results, FEM simulations were performed in order to optimize the hot working process. After hot working, forged work-pieces were machined and welded by electron beam. Final nozzle component were heat treated and their microstructure and mechanical properties were investigated.

  • PDF

초초 임계 화력 발전소용 밸브 소재의 산화 거동 (A Study on the Oxidation Behaviors of Power Plant Valve Materials under the Ultra Super Critical Condition)

  • 이준섭;조동율;윤재홍;주윤곤;송기오;조재영;강진호;이선호;엄기원;이종욱
    • 한국표면공학회지
    • /
    • 제42권1호
    • /
    • pp.26-33
    • /
    • 2009
  • Recently ultra-supercritical steam power plants operate at $1000^{\circ}F$ ($538^{\circ}C$) and 3500 psi (24.1 MPa). Thermal efficiency of power plant will be increased about 2% if steam temperature increases from $1000^{\circ}F$ to $1150^{\circ}F$ ($621^{\circ}C$). In this study valve materials Incoloy901 (IC901) and Inconel718 (IN718) were nitrided to improve the surface hardness and solid lubrication function of the valve materials. The hardness of both IC901 and IN718 increased about two times by ion nitriding. IC901, IN718 and their nitrided specimens were corroded under ultra super-critical condition (USC) of $621^{\circ}C$. and 3600 psi (24.8 MPa) for 2000 hours. Oxidations of both IC901 and IN718 were very small due to the formation of protective oxide layer on the surface. But the corrosion resistance of both nitrided specimens decreased because of the formation of non-protective nitride layer of $Fe_{4}N$, $Fe_{2}N$ and CrN on the surface layer. The hardness of both nitrided IC901 and IN718 at $20{\mu}m$ depth from the surface decreased about 30% and 20% respectively by USC 2000 hours.

용융가압함침 공정으로 제조된 고체적률 TiC-Inconel 718 금속복합재료의 미세조직 및 특성 (Microstructure and Properties of TiC-Inconel 718 Metal Matrix Composites Fabricated by Liquid Pressing Infiltration Process)

  • 조승찬;이영환;고성민;박현재;이동현;신상민;조일국;이상복;이상관
    • Composites Research
    • /
    • 제32권3호
    • /
    • pp.158-162
    • /
    • 2019
  • 본 연구에서는 용융가압함침 공정을 이용하여 고체적률의 TiC 입자가 균일 분산된 Inconel 718 금속복합재료를 제조하고, 미세조직 및 기계적 특성을 분석하였다. 약 55 vol%의 TiC가 균일하게 분산된 TiC-Inconel 718 복합재료를 제조함으로써 Inconel 718 대비 우수한 경도 및 압축강도 특성을 나타내었으며, 이는 기지에 고용된 합금원소인 Mo 및 Nb이 TiC 강화재 내부로 확산 고용되어 우수한 계면 특성을 가지는 core-rim 구조의 TiC 형성에 의한 것으로 판단된다.

A Study on Reusable Metal Component as Burnable Absorber Through Monte Carlo Depletion Analysis

  • Muth, Boravy;Alrawash, Saed;Park, Chang Je;Kim, Jong Sung
    • 방사성폐기물학회지
    • /
    • 제18권4호
    • /
    • pp.481-496
    • /
    • 2020
  • After nuclear power plants are permanently shut down and decommissioned, the remaining irradiated metal components such as stainless steel, carbon steel, and Inconel can be used as neutron absorber. This study investigates the possibility of reusing these metal components as neutron absorber materials, that is burnable poison. The absorption cross section of the irradiated metals did not lose their chemical properties and performance even if they were irradiated over 40-50 years in the NPPs. To examine the absorption capability of the waste metals, the lattice calculations of WH 17×17 fuel assembly were analyzed. From the results, Inconel-718 significantly hold-down fuel assembly excess reactivity compared to stainless steel 304 and carbon steel because Inconel-718 contains a small amount of boron nuclide. From the results, a 20wt% impurity of boron in irradiated Inconel-718 enhances the excess reactivity suppression. The application of irradiated Inconel-718 as a burnable absorber for SMR core was investigated. The irradiated Inconel-718 impurity with 20wt% of boron content can maintain and suppress the whole core reactivity. We emphasize that the irradiated metal components can be used as burnable absorber materials to control the reactivity of commercial reactor power and small modular reactors.

실험계획법을 이용한 인서트 종류에 따른 Inconel 718 선삭가공조건 최적화 (Optimization of the Turning Conditions of Inconel 718 according to Insert Materials using DOE)

  • 신필선;김재경;전의식
    • 한국기계가공학회지
    • /
    • 제21권8호
    • /
    • pp.1-8
    • /
    • 2022
  • Inconel 718 is nickel-based and is increasingly being used as a key component in the nuclear, aerospace, and chemical industries which require high fatigue strength and oxidation, because of its excellent corrosion resistance, heat resistance, and wear resistance. It is a heat-resistant alloy which has excellent mechanical properties; however, material deformation, cracking, and shaking occur because of the high cutting temperature accumulated on the cutting surface during cutting processing, and heat accumulated at the insert boundary. Owing to these characteristics, various studies have been conducted, such as developing a tool exclusively for non-deletion, analyzing tool wear, and developing a tool cooling system. However, the optimization of the cutting process is still insufficient. In this study, the optimal process conditions were derived experimentally by cutting conditions according to the insert type during the cutting of Inconel 718.

Inconel 718의 국부 부식 저항성에 미치는 용체화 열처리의 영향 (Effect of Solution Annealing Heat Treatment on the Localized Corrosion Resistance of Inconel 718)

  • 이윤화;이준섭;권순일;신정호;이재현
    • Corrosion Science and Technology
    • /
    • 제22권5호
    • /
    • pp.359-367
    • /
    • 2023
  • The localized corrosion resistance of the Ni-based Inconel 718 alloy after solution heat treatment was evaluated using electrochemical techniques in a solution of 25 wt% NaCl and 0.5 wt% acetic acid. Solution heat treatment at 1050 ℃ for 2.5 hours resulted in an increased average grain diameter. Both Ti carbides (10 ㎛ diameter) and Nb-Mo carbides (1 - 9 ㎛ diameter) were distributed throughout the material. Despite heat treatment, the shape and composition of these carbides remained consistent. An increase in solution temperature led to a decrease in pitting potential value. However, the pitting potential value of solution heat-treated Inconel 718 was consistently higher than that of as-received Inconel 718 at all tested temperatures. Localized corrosion initiation occurred at 0.4 VSSE in a temperature environment of 80 ℃ for both as-received and solution heat-treated Inconel 718 alloys. X-ray photoelectron spectroscopic analysis indicated that the composition of the passive film formed on specimen surfaces remained largely unchanged after solution heat treatment, with O1s, Cr2p3/2, Fe2p3/2, and Ni2p3/2 present. The difference in localized corrosion resistance between as-received and solution heat-treated Inconel 718 alloys was attributable to microstructural changes induced by the heat treatment process.