• 제목/요약/키워드: IMU sensor

검색결과 250건 처리시간 0.022초

Development of LiDAR Simulator for Backpack-mounted Mobile Indoor Mapping System

  • Chung, Minkyung;Kim, Changjae;Choi, Kanghyeok;Chung, DongKi;Kim, Yongil
    • 한국측량학회지
    • /
    • 제35권2호
    • /
    • pp.91-102
    • /
    • 2017
  • Backpack-mounted mapping system is firstly introduced for flexible movement in indoor spaces where satellite-based localization is not available. With the achieved advances in miniaturization and weight reduction, use of LiDAR (Light Detection and Ranging) sensors in mobile platforms has been increasing, and indeed, they have provided high-precision information on indoor environments and their surroundings. Previous research on the development of backpack-mounted mapping systems, has concentrated mostly on the improvement of data processing methods or algorithms, whereas practical system components have been determined empirically. Thus, in the present study, a simulator for a LiDAR sensor (Velodyne VLP-16), was developed for comparison of the effects of diverse conditions on the backpack system and its operation. The simulated data was analyzed by visual inspection and comparison of the data sets' statistics, which differed according to the LiDAR arrangement and moving speed. Also, the data was used as input to a point-cloud registration algorithm, ICP (Iterative Closest Point), to validate its applicability as pre-analysis data. In fact, the results indicated centimeter-level accuracy, thus demonstrating the potentials of simulation data to be utilized as a tool for performance comparison of pointdata processing methods.

수중로봇 위치추정을 위한 베이시안 필터 방법의 실현과 거리 측정 특성 분석 (Implementation of Bayesian Filter Method and Range Measurement Analysis for Underwater Robot Localization)

  • 노성우;고낙용;김태균
    • 로봇학회논문지
    • /
    • 제9권1호
    • /
    • pp.28-38
    • /
    • 2014
  • This paper verifies the performance of Extended Kalman Filter(EKF) and MCL(Monte Carlo Localization) approach to localization of an underwater vehicle through experiments. Especially, the experiments use acoustic range sensor whose measurement accuracy and uncertainty is not yet proved. Along with localization, the experiment also discloses the uncertainty features of the range measurement such as bias and variance. The proposed localization method rejects outlier range data and the experiment shows that outlier rejection improves localization performance. It is as expected that the proposed method doesn't yield as precise location as those methods which use high priced DVL(Doppler Velocity Log), IMU(Inertial Measurement Unit), and high accuracy range sensors. However, it is noticeable that the proposed method can achieve the accuracy which is affordable for correction of accumulated dead reckoning error, even though it uses only range data of low reliability and accuracy.

UAV 기반의 실시간 공중모니터링을 위한 멀티센서 시스템 설계 (Design of Multi Sensor System for UAV Based Real-time Aerial Monitoring)

  • 홍주석;최경아;이임평;오태완
    • 한국GIS학회:학술대회논문집
    • /
    • 한국GIS학회 2008년도 공동춘계학술대회
    • /
    • pp.322-324
    • /
    • 2008
  • 재난재해 등 긴급 상황이 발생했을 때 신속한 대응 체계 수립을 위해 비 접근 및 난접근 지대, 목표물 감시대상지역에 대한 공간정보를 신속하게 취득할 수 있는 실시간 공중모니터링 체계의 구축이 시급한 실정이다. 이에 본 연구에서는 긴급한 재난 상황과 혹은 이와 유사한 여러 상황에 신속하고 유연하게 운용될 수 있는 무인헬기 기반의 실시간 공중 모니터링 체계에 적용할 멀티 센서 시스템의 설계를 목표로 한다. 이를 위해 먼저 실시간 공중모니터링 임무 및 운용 시나리오를 크게 4가지로 설정하고 이에 적합한 디지털 카메라, 레이저 스캐너, GPS/IMU 및 무인헬기 플랫폼의 요구사항을 각각 도출하였다. 또한, 기술 동향 및 규격 조사결과를 바탕으로 도출된 요구사항에 가장 적합한 각각의 센서 및 플랫폼을 선정하였다. 마지막으로 시스템 설계의 최적화를 위하여 시뮬레이션을 통해 설정된 임무에 부합하는 품질의 공간정보 성과물이 선정된 멀티센서 시스템으로부터 취득 가능한가를 검증하였다. 본 연구를 통해 소형무인헬기기반의 멀티 센서시스템에 대한 최적 설계의 방법론을 정립할 수 있었고, 향후 설계의 결과는 임무로부터 도출된 요구사항에 최적화된 맞춤형 시스템 구축에 적용들 예정이다.

  • PDF

Smart Safety Belt for High Rise Worker at Industrial Field

  • Lee, Se-Hoon;Moon, Hyo-Jae;Tak, Jin-Hyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권2호
    • /
    • pp.63-70
    • /
    • 2018
  • Safety management agent manages the risk behavior of the worker with the naked eye, but there is a real difficulty for one the agent to manage all the workers. In this paper, IoT device is attached to a harness safety belt that a worker wears to solve this problem, and behavior data is upload to the cloud in real time. We analyze the upload data through the deep learning and analyze the risk behavior of the worker. When the analysis result is judged to be dangerous behavior, we designed and implemented a system that informs the manager through monitoring application. In order to confirm that the risk behavior analysis through the deep learning is normally performed, the data values of 4 behaviors (walking, running, standing and sitting) were collected from IMU sensor for 60 minutes and learned through Tensorflow, Inception model. In order to verify the accuracy of the proposed system, we conducted inference experiments five times for each of the four behaviors, and confirmed the accuracy of the inference result to be 96.0%.

2단계 히든마코프 모델을 이용한 제스쳐의 성능향상 연구 (Improvement of Gesture Recognition using 2-stage HMM)

  • 정훤재;박현준;김동한
    • 제어로봇시스템학회논문지
    • /
    • 제21권11호
    • /
    • pp.1034-1037
    • /
    • 2015
  • In recent years in the field of robotics, various methods have been developed to create an intimate relationship between people and robots. These methods include speech, vision, and biometrics recognition as well as gesture-based interaction. These recognition technologies are used in various wearable devices, smartphones and other electric devices for convenience. Among these technologies, gesture recognition is the most commonly used and appropriate technology for wearable devices. Gesture recognition can be classified as contact or noncontact gesture recognition. This paper proposes contact gesture recognition with IMU and EMG sensors by using the hidden Markov model (HMM) twice. Several simple behaviors make main gestures through the one-stage HMM. It is equal to the Hidden Markov model process, which is well known for pattern recognition. Additionally, the sequence of the main gestures, which comes from the one-stage HMM, creates some higher-order gestures through the two-stage HMM. In this way, more natural and intelligent gestures can be implemented through simple gestures. This advanced process can play a larger role in gesture recognition-based UX for many wearable and smart devices.

개방형 제어 플랫폼 기반 호버링형 무인잠수정 테스트베드 설계 및 성능평가 (Design of a Test bed and Performance Evaluation for a Hovering Type Autonomous Underwater Vehicle under Open Control Platform)

  • 최재원;하태규;;유창호;서영봉
    • 제어로봇시스템학회논문지
    • /
    • 제16권5호
    • /
    • pp.489-497
    • /
    • 2010
  • This paper presents the design of hardware platform, which is a test bed for the navigation system and hovering type AUV (Autonomous Underwater Vehicle) under the OCP (Open Control Platform). The developed AUV test bed consists of two hulls, four thrusters, and the navigation system which uses a SBC2440II with IMU (Inertial Measurement Unit). And the SMC (Sliding Mode Control) is chosen for the diving and steering control of the AUV. This paper uses ACE/TAO RTEC (Real-Time Event Channel) as a middleware platform in order to control and communicate in the developed AUV test bed. In this paper, two computers are used and each of them is dedicated for the specific purpose, the first computer is used as the SMC module and the middleware platform for the ACE/TAO RTEC and the second computer is used for the sensor controller. We analyze the performance of the AUV test bed under the OCP.

약결합 방식의 GPS/INS 통합시스템 설계 (Design of a loosely-coupled GPS/INS integration system)

  • 김종혁;문승욱;김세환;황동환;이상정;오문수;나성웅
    • 한국군사과학기술학회지
    • /
    • 제2권2호
    • /
    • pp.186-196
    • /
    • 1999
  • The CPS provides data with long-term stability independent of passed time and the INS provides high-rate data with short-term stability. By integrating these complementary systems, a highly accurate navigation system can be achieved. In this paper, a loosely-coupled GPS/INS integration system is designed. It is a simple structure and is easy to implement and preserves independent navigation capability of GPS and INS. The integration system consists of a NCU, an IMU, a GPS receiver, and a monitoring system. The navigation algorithm in the NCU is designed under the multi-tasking environment based on a real-time kernel system and the monitoring system is designed using the Visual C++. The integrated Kalman filter is designed as a feedback formed 15-state filter, in which the states are position errors, velocity errors, attitude errors and sensor bias errors. The van test result shows that the integrated system provides more accurate navigation solution then the inertial or the GPS-alone navigation system.

  • PDF

도로시설물 관리를 위한 교통안전표지 인식 및 자동위치 취득 방법 연구 (The Road Traffic Sign Recognition and Automatic Positioning for Road Facility Management)

  • 이준석;윤덕근
    • 한국도로학회논문집
    • /
    • 제15권1호
    • /
    • pp.155-161
    • /
    • 2013
  • PURPOSES: This study is to develop a road traffic sign recognition and automatic positioning for road facility management. METHODS: In this study, we installed the GPS, IMU, DMI, camera, laser sensor on the van and surveyed the car position, fore-sight image, point cloud of traffic signs. To insert automatic position of traffic sign, the automatic traffic sign recognition S/W developed and it can log the traffic sign type and approximate position, this study suggests a methodology to transform the laser point-cloud to the map coordinate system with the 3D axis rotation algorithm. RESULTS: Result show that on a clear day, traffic sign recognition ratio is 92.98%, and on cloudy day recognition ratio is 80.58%. To insert exact traffic sign position. This study examined the point difference with the road surveying results. The result RMSE is 0.227m and average is 1.51m which is the GPS positioning error. Including these error we can insert the traffic sign position within 1.51m CONCLUSIONS: As a result of this study, we can automatically survey the traffic sign type, position data of the traffic sign position error and analysis the road safety, speed limit consistency, which can be used in traffic sign DB.

Requirements Analysis of Image-Based Positioning Algorithm for Vehicles

  • Lee, Yong;Kwon, Jay Hyoun
    • 한국측량학회지
    • /
    • 제37권5호
    • /
    • pp.397-402
    • /
    • 2019
  • Recently, with the emergence of autonomous vehicles and the increasing interest in safety, a variety of research has been being actively conducted to precisely estimate the position of a vehicle by fusing sensors. Previously, researches were conducted to determine the location of moving objects using GNSS (Global Navigation Satellite Systems) and/or IMU (Inertial Measurement Unit). However, precise positioning of a moving vehicle has lately been performed by fusing data obtained from various sensors, such as LiDAR (Light Detection and Ranging), on-board vehicle sensors, and cameras. This study is designed to enhance kinematic vehicle positioning performance by using feature-based recognition. Therefore, an analysis of the required precision of the observations obtained from the images has carried out in this study. Velocity and attitude observations, which are assumed to be obtained from images, were generated by simulation. Various magnitudes of errors were added to the generated velocities and attitudes. By applying these observations to the positioning algorithm, the effects of the additional velocity and attitude information on positioning accuracy in GNSS signal blockages were analyzed based on Kalman filter. The results have shown that yaw information with a precision smaller than 0.5 degrees should be used to improve existing positioning algorithms by more than 10%.

다양한 웨어러블 디바이스를 활용한 크로스컨트리스키 실시간 위치 추적: 사례 연구 (Real-time Location Tracking Analysis of Cross-country Skiing using Various Wearable Devices: A Case Study)

  • Hwang, Jinny;Kim, Jinhae;Kim, Hyeyoung;Moon, Jeheon;Lee, Jusung;Kim, Jinhyeok
    • 한국운동역학회지
    • /
    • 제29권1호
    • /
    • pp.1-8
    • /
    • 2019
  • Objective: The purpose of this study was to confirm that the cross-country ski sprint course in PyeongChang, where the 2018 Winter Olympics course was to utilize wearable devices equipped with inertial measurement unit (IMU), global positioning system (GPS) and heart rates sensor. Method: For the data collection, two national level cross-country (XC) skiers performed classic technique on the entire sprint course. We analyzed cycle characteristics, range of motion on double poling (DP) technique, average velocity, and displacement of 3 points according to the terrain. Results: The absolute cycle time gradually decreased during starting, middle and finish sections. While the length of the DP increased and the heart rates tended to increase for men skier. In addition, the results indicated that range of motion of knee joint during starting and finish section decreased more than middle section. The errors of latitude and longitude data collected through GPS were within 3 m from 3 points. Conclusion: Through the first case study in Korea, which analyzed the location and condition of XC skiers in the entire sprint course in real time, confirmed that feedback was available in the field using various wearable sensors.