• Title/Summary/Keyword: IMRT verification

Search Result 53, Processing Time 0.038 seconds

3 Dimensional IMRT Quality Assurance using the Optimization Algorithm (최적화 알고리즘을 이용한 3차원 IMRT 정도관리)

  • Shin, Dong-Ho;Park, Dong-Hyun;Kim, Joo-Young;Park, Sung-Yong;Cho, Kwan-Ho
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.72-74
    • /
    • 2004
  • To accurately verify the does of intensity modulated radiation therapy(IMRT), we developed 2 dimensional dose verification algorithm using the global optimization methode and applied to clinic. We extended to study of 3 vdimensional optimization methode, and made of arcyl 3D IMRT phantom and 3D IMRT dose verification system for film dosimetry.

  • PDF

Dosimetric Verification for Primary Focal Hypermetabolism of Nasopharyngeal Carcinoma Patients Treated with Dynamic Intensity-modulated Radiation Therapy

  • Xin, Yong;Wang, Jia-Yang;Li, Liang;Tang, Tian-You;Liu, Gui-Hong;Wang, Jian-She;Xu, Yu-Mei;Chen, Yong;Zhang, Long-Zhen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.3
    • /
    • pp.985-989
    • /
    • 2012
  • Objective: To make sure the feasibility with $^{18F}FDG$ PET/CT to guided dynamic intensity-modulated radiation therapy (IMRT) for nasopharyngeal carcinoma patients, by dosimetric verification before treatment. Methods: Chose 11 patients in III~IVA nasopharyngeal carcinoma treated with functional image-guided IMRT and absolute and relative dosimetric verification by Varian 23EX LA, ionization chamber, 2DICA of I'mRT Matrixx and IBA detachable phantom. Drawing outline and making treatment plan were by different imaging techniques (CT and $^{18F}FDG$ PET/CT). The dose distributions of the various regional were realized by SMART. Results: The absolute mean errors of interest area were $2.39%{\pm}0.66$ using 0.6cc ice chamber. Results using DTA method, the average relative dose measurements within our protocol (3%, 3 mm) were 87.64% at 300 MU/min in all filed. Conclusions: Dosimetric verification before IMRT is obligatory and necessary. Ionization chamber and 2DICA of I'mRT Matrixx was the effective dosimetric verification tool for primary focal hyper metabolism in functional image-guided dynamic IMRT for nasopharyngeal carcinoma. Our preliminary evidence indicates that functional image-guided dynamic IMRT is feasible.

The Properties of Beam Intensity Scanner(BInS) in IMRT with Phantom for Three Dimensional Dose Verification

  • Young W. Vahc;Park, Kwangyl;Byung Y. Yi;Park, Kyung R.;Lee, Jong Y.;Ohyun Kwon;Park, Kwangyl;Kim, Keun M.
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.64-64
    • /
    • 2003
  • Objectives: Patient dose verification is clinically the most important parts in the treatment delivery of radiation therapy. The three dimensional(3D) reconstruction of dose distribution delivered to target volume helps to verify patient dose and determine the physical characteristics of beams used in intensity modulated radiation therapy(IMRT). We present Beam Intensity Scanner(BInS) system for the pre treatment dosimetric verification of two dimensional photon intensity. The BInS is a radiation detector with a custom made software for relative dose conversion of fluorescence signals from scintillator. Methods: This scintillator is fabricated by phosphor Gadolinium Oxysulphide and is used to produce fluorescence from the irradiation of 6MV photons on a Varian Clinac 21EX. The digitized fluoroscopic signals obtained by digital video camera will be processed by our custom made software to reproduce 3D relative dose distribution. For the intensity modulated beam(IMB), the BInS calculates absorbed dose in absolute beam fluence, which are used for the patient dose distribution. Results: Using BInS, we performed various measurements related to IMRT and found the followings: (1) The 3D dose profiles of the IMBs measured by the BInS demonstrate good agreement with radiographic film, pin type ionization chamber and Monte Carlo simulation. (2) The delivered beam intensity is altered by the mechanical and dosimetric properties of the collimating of dynamic and/or static MLC system. This is mostly due to leaf transmission, leaf penumbra, scattered photons from the round edges of leaves, and geometry of leaf. (3) The delivered dose depends on the operational detail of how to make multileaf opening. Conclusions: These phenomena result in a fluence distribution that can be substantially different from the initial and calculative intensity modulation and therefore, should be taken into account by the treatment planing for accurate dose calculations delivered to the target volume in IMRT.

  • PDF

A Monitor Unit Verification Calculation in IMRT as a Dosimetry QA

  • Kung, J.H.;Chen, G.T.Y.;Kuchnir, F.T.
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.68-73
    • /
    • 2002
  • In standard teletherapy, a treatment plan is generated with the aid of a treatment planning system, but it is common to perform an independent monitor unit verification calculation (MUVC). In exact analogy, we propose and demonstrate that a simple and accurate MUVC in Intensity Modulated Radiotherapy (IMRT) is possible. We introduce a concept of Modified Clarkson Integration (MCI). In MCI, we exploit the rotational symmetry of scattering to simplify the dose calculation. For dose calculation along a central axis (CAX), we first replace the incident IMRT fluence by an azimuthally averaged fluence. Second, the Clarkson Integration is carried over annular sectors instead of over pie sectors. We wrote a computer code, implementing the MCI technique, in order to perform a MUVC for IMRT purposes. We applied the code to IMRT plans generated by CORVUS. The input to the code consists of CORVUS plan data (e.g., DMLC files, jaw settings, MU for each IMRT field, depth to isocenter for each IMRT field), and the output is dose contribution by individual IMRT field to the isocenter. The code uses measured beam data for Sc, Sp, TPR, (D/Mu)$\_$ref/ and includes effects from MLC transmission, and radiation field offset. On a 266 MHZ desktop computer, the code takes less than 15 sec to calculate a dose. The doses calculated with MCI algorithm agreed within +/- 3% with the doses calculated by CORVUS, which uses a 1cm x 1cm pencil beam in dose calculation. In the present version of MCI, skin contour variations and inhomogeneities were neglected.

  • PDF

Comparison treatment planning with the measured change the dose of each Junction section according to the error of setup CSI Treatment with Conventional, IMRT, VMAT (Conventional, IMRT, VMAT을 이용한 CSI 치료시, Setup 오차에 따른 각 Junction부의 선량변화측정을 통한 치료계획 비교)

  • Lee, Ho Jin;Jeon, Chang Woo;Ahn, Bum Suk;Yu, Sook Hyeon;Park, So Yeon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.217-224
    • /
    • 2014
  • Purpose : Conventional, IMRT, at CSI treatment with VMAT, this study compare the treatment plan with dose changes measured at Junction field according to the error of Setup. Materials and Methods : This study established Conventional, the IMRT, VMAT treatment planning for CSI therapy using the Eclipse 10.0 (Eclipse10.0, Varian, USA) and chose person in Seoul National University Hospital. Verification plan was also created to apply IMRT QA phantom for each treatment plan to the film measurements. At this time, the error of Setup was applied to the 2, 4, 6mm respectively with the head and foot direction. ("+" direction of the head, "-" means that the foot direction.) Using IMRT QA Phantom and EBT2 film, was investigated by placing the error of Setup for each Junction. We check the consistency of the measured Film and plan dose distribution by gamma index (Gamma index, ${\gamma}$). In addition, we compared the error of Setup by the dose distribution, and analyzing the uniformity of the dose distribution within the target by calculating the Homogeneity Index (HI). Results : It was figured out that 90.49%-gamma index we obtained with film is agreement with film scan score and dose distribution of treatment plan. Also, depend on the dose distribution on distance, if we make the error of Setup 2, 4, 6mm in the head direction, it showed that 3.1, 4.5, 8.1 at $^*Diff$(%) of Conventional, 1.1, 3.5, 6.3 at IMRT, and 1.6, 2.5, 5.7 at VMAT. In the same way, if we make the error of Setup 2, 4, 6mm in the foot direction, it showed that -1.6, -2.8, -4.4 at $^*Diff$(%) of Conventional, -0.9, -1.6, -2.9 at IMRT, and -0.5, -2.2, -2.5 at VMAT. Homogeneity Index(HI)s are 1.216 at Conventional, 1.095 at IMRT and 1.069 at VMAT. Discussion and Conclusion : The dose-change depend on the error of Setup at the CSI RT(radiation therapy) using IMRT and VMAT which have advantages, Dose homogeneity and the gradual dose gradients on the Junction part is lower than that of Conventional CSI RT. This a little change of dose means that there is less danger on patients despite of the error of Setup generated at the CSI RT.

The usefulness of Forward IMRT for Head and Neck Cancer (두경부(Head & Neck)종양에서 Forward IMRT 유용성에 관한 고찰)

  • Baek Geum Mun;Kim Dae Sup;Park Kwang Ho;Kim Chung Man
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.15 no.1
    • /
    • pp.41-52
    • /
    • 2003
  • I. Purpose The dose distribution in normal tissues and target lesions is very important in the treatment planning. To make the uniform dose distribution in target lesions, many methods has been used. Especially in the head and neck, the dose inhomogeneity at the skin surface should be corrected. Conventional methods have a limitation in delivering the enough doses to the planning target volume (PTV) with minimized dose to the parotid gland and spinal cord. In this study, we investigated the feasibility and the practical QA methods of the forward IMRT. II. Material and Methods The treatment plan of the forward IMRT with the partial block technique using the dynamic multi-leaf collimator (dMLC) for the patients with the nasopharyngeal cancer was verified using the dose volume histogram (DVH). The films and pinpoint chamber were used for the accurate dose verification. III. Results As a result of verifying the DVH for the 2-D treatment plan with the forward IMRT, the dose to the both parotid gland and spinal cord were reduced. So the forward IMRT could save the normal tissues and optimize the treatment. Forward IMRT can use the 3-D treatment planning system and easily assure the quality, so it is easily accessible comparing with inverse IMRT IV. Conclusion The forward IMRT could make the uniform dose in the PTV while maintaining under the tolerance dose in the normal tissues comparing with the 2-D treatment.

  • PDF

Dose Verification of Intensity Modulated Radiation Therapy with Beam Intensity Scanner System

  • Vahc, Young-Woo;Park, Kwangyl;Ohyun Kwon;Park, Kyung-Ran;Lee, Yong-Ha;Yi, Byung-Yong;Kim, Sookil
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.248-251
    • /
    • 2002
  • The intensity modulated radiation therapy (IMRT) with a multileaf collimator (MLC) requires the conversion of a radiation fluence map into a leaf sequence file that controls the movement of the MLC during radiation treatment of patients. Patient dose verification is clinically one of the most important parts in the treatment delivery of the radiation therapy. The three dimensional (3D) reconstruction of dose distribution delivered to the target helps to verify patient dose and to determine the physical characteristics of beams used in IMRT. A new method is presented for the pretreatment dosimetric verification of two dimensional distributions of photon intensity by means of Beam Intensity Scanner System (BISS) as a radiation detector with a custom-made software for dose calculation of fluorescence signals from scintillator. The scintillator is used to produce fluorescence from the irradiation of 6MV photons on a Varian Clinac 21EX. The BISS reproduces 3D- relative dose distribution from the digitized fluoroscopic signals obtained by digital video camera-based scintillator(DVCS) device in the IMRT. For the intensity modulated beams (IMBs), the calculations of absorbed dose are performed in absolute beam fluence profiles which are used for calculation of the patient dose distribution. The 3D-dose profiles of the IMBs with the BISS were demonstrated by relative measurements of photon beams and shown good agreement with radiographic film. The mechanical and dosimetric properties of the collimating of dynamic and/or step MLC system alter the generated intensity. This is mostly due to leaf transmission, leaf penumbra and geometry of leaves. The variations of output according to the multileaf opening during the irradiation need to be accounted for as well. These phenomena result in a fluence distribution that can be substantially different from the initial and calculative intensity modulation and therefore, should be taken into account by the treatment planning for accurate dose calculations delivered to the target volume in IMRT.

  • PDF

MU Fluence Reconstruction based-on Delivered Leaf Position: for IMRT Quality Assurance (세기조절방사선치료의 정도관리를 위한 모니터유닛 공간분포 재구성의 효용성 평가)

  • Park, So-Yeon;Park, Yang-Kyun;Park, Jong-Min;Choi, Chang-Heon;Ye, Sung-Joon
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.1
    • /
    • pp.28-34
    • /
    • 2011
  • The measurement-based verification for intensity modulated radiation therapy (IMRT) is a time-and labor-consuming procedure. Instead, this study aims to develop a MU fluence reconstruction method for IMRT QA. Total actual fluences from treatment planning system (TPS, Eclipse 8.6, Varian) were selected as a reference. Delivered leaf positions according to MU were extracted by the dynalog file generated after IMRT delivery. An in-house software was develop to reconstruct MU fluence from the acquired delivered leaf position data using MATLAB. We investigated five patient's plans delivered by both step-and-shoot IMRT and sliding window technologies. The total actual fluence was compared with the MU fluence reconstructed by using commercial software (Verisoft 3.1, PTW) and gamma analysis method (criteria: 3%/3 mm and 2%/1 mm). Gamma pass rates were $97.8{\pm}1.33$% and the reconstructed fluence was shown good agreement with RTP-based actual fluence. The fluence from step and shoot IMRT was shown slightly higher agreement with the actual fluence than that from sliding window IMRT. If moving from IMRT QA measurements toward independent computer calculations, the developed method can be used for IMRT QA. A point dose calculation method from reconstructed fluences is under development for the routine IMRT QA purpose.