• Title/Summary/Keyword: IMPACT SHOCK

Search Result 431, Processing Time 0.025 seconds

The Comparative Analysis on Mechanical Property Test of Carbon Nanotube-based Shock Absorbers (탄소나노튜브를 기반으로 하는 충격흡수제의 물리적 특성 비교분석)

  • Kim, Jong-Woo;Chae, Woen-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.2
    • /
    • pp.237-242
    • /
    • 2012
  • The purpose of this study was (a) to develop carbon nanotube-based shock absorbers for reducing potentially harmful impact forces and excessive foot pronation, and (b) to briefly determine how the effects of carbon nanotube-based shock absorbers on biomechanical variance during drop landing. A university student(age: 24.0 yrs, height: 176.2 cm, weight: 679.5 N) who has no musculoskeletal disorder was recruited as the subject. Hardness, specific gravity, tensile strength, elongation, 100% modulus, tear strength, split tear strength, compression set, resilience, vertical GRF, and loading rate were determined for each material. For each dependent variable, a descriptive statistics was used for different conditions. The property test results showed that tensile strength, tear strength, split tear strength, compression set, and resilience in carbon nanotube-based shock absorbers were greater than general Ethylene Vinyl Acetate(EVA). These indicated that resistance against variable strength in developed carbon nanotube-based shock absorbers were greater than general EVA. In vertical GRF of CNTC was less than those of EVA during drop landing and loading rate of CNTC was greater than EVA. It seems that the use of CNT can be a effective way of reducing and controlling shock from impact.

Influence of the Midsole Hardness on Shock Absorption along the Human Body during Running (달리기 중 신발 중저의 경도가 인체를 따라 흡수되는 충격에 미치는 영향)

  • Lee, Yong-Ku;Kim, Yoon-Hyuk
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.1
    • /
    • pp.33-39
    • /
    • 2010
  • During running, the human body experiences repeated impact force between the foot and the ground. The impact force is highly associated with injury of the lower extremity, comfort and running performance. Therefore, shoemakers have developed shoes with various midsole properties to prevent the injury of lower extremity, improve the comfort and enhance the running performance. The purpose of this study is to investigate influence of midsole hardness on shock absorption along the human body during running. Thirty two expert runners consented to participate in the study and ran at a constant speed with three different pairs of shoes with soft, medium and hard midsole respectively. Using accelerometers we measured the shock absorption from shoe heel to cervical vertebral column. In conclusion, at the shoe heel, shock was the greatest with the hard midsole. However because most shock was absorbed between shoe heel and the knee, notable influence of midsole was not detected upper knee. At shoe heel, regardless of midsole hardness, the shock of younger female was the greatest. The authors expect to apply this result for providing a guideline for utilizing proper midsole hardness for manufacturing age and gender-specific shoe.

Investigating of a Floor-Impact Isolation System Using Damping Materials In Apartment Buildings (공동주택에서 완충재를 이용한 바닥충격음 저감 System 연구)

  • 송희수;정영;정정호;전진용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.499-504
    • /
    • 2004
  • The purpose of this study is to investigate a investigating of a floor-impact isolation system using damping materials in apartment buildings. The stiffness elastic modulus(k) by puls impact forces were calculated loss factor by Hilbert transforms. It is absolved that natural frequency was moved floor shock-absorbing materials and the impact force was reduced by floor panel. The slab was constructed by damping materials. As towards a result, the system showed inverse A 45dB by heavy weight-impact noise and inverse A 52dB by light-impact noise. High frequencies impact-noise can be reduced by upgrading naturial frequency of vibration and noise in the system.

  • PDF

Changes in Impact Characteristics of the Body by Different Heel Strike Patterns during Running (달리기 시 착지 유형에 따른 인체에 미치는 충격의 변화)

  • Young-Seong Lee;Sang-Kyoon Park
    • Korean Journal of Applied Biomechanics
    • /
    • v.33 no.4
    • /
    • pp.164-174
    • /
    • 2023
  • Objective: The aim of this study was to quantitatively analyze the impact characteristics of the lower extremity on strike pattern during running. Method: 19 young subjects (age: 26.53 ± 5.24 yrs., height: 174.89 ± 4.75 cm, weight: 70.97 ± 5.97 kg) participated in this study. All subjects performed treadmill running with fore-foot strike (FFS), mid-foot strike (MFS), and rear-foot strike (RFS) to analyze the impact characteristics in the lower extremity. Impact variables were analyzed including vertical ground reaction force, lower extremity joint moments, impact acceleration, and impact shock. Accelerometers for measuring impact acceleration and impact shock were attached to the heel, distal tibia, proximal tibia, and 50% point of the femur. Results: The peak vertical force and loading rate in passive portion were significantly higher in MFS and FFS compared to FFS. The peak plantarflexion moment at the ankle joint was significantly higher in the FFS compared to the MFS and RFS, while the peak extension moment at the knee joint was significantly higher in the RFS compared to the MFS and FFS. The resultant impact acceleration was significantly higher in FFS and MFS than in RFS at the foot and distal tibia, and MFS was significantly higher than FFS at the proximal tibia. In impact shock, FFS and MFS were significantly higher than RFS at the foot, distal tibia, and proximal tibia. Conclusion: Running with 3 strike patterns (FFS, MFS, and RFS) show different impact characteristics which may lead to an increased risk of running-related injuries (RRI). However, through the results of this study, it is possible to understand the characteristics of impact on strike patterns, and to explore preventive measures for injuries. To reduce the incidence of RRI, it is crucial to first identify one's strike pattern and then seek appropriate alternatives (such as reducing impact force and strengthening relevant muscles) on that strike pattern.

Relationship between Impact and Shear Forces, and Shock during Running (달리기 시 충격력과 충격 쇼크 변인들과의 관계)

  • Park, Sang-Kyoon;Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.2
    • /
    • pp.145-154
    • /
    • 2020
  • Objective: The purpose of this study was to determine the relationship between impact and shear peak force, and tibia-accelerometer variables during running. Method: Twenty-five male heel strike runners (mean age: 23.5±3.6 yrs, mean height: 176.3±3.3 m/s, mean mass: 71.8±9.7 kg) were recruited in this study. The peak impact and anteroposterior shear forces during treadmill running (Bertec, USA) were collected, and impact shock variables were computed by using a triaxial accelerometer (Noraxon, USA). One-way ANOVA was used to test the influence of the running speed on the parameters. Pearson's partial correlation was used to investigate the relationship between the peak impact and shear force, and accelerometer variables. Results: The running speed affected the peak impact and posterior shear force, time, slope, and peak vertical and resultant tibial acceleration, slope at heel contact. Significant correlations were noticed between the peak impact force and peak vertical and resultant tibia acceleration, and between peak impact average slope and peak vertical and resultant tibia acceleration average slope, and between posterior peak (FyP) and peak vertical tibia acceleration, and between posterior peak instantaneous slop and peak vertical tibial acceleration during running at 3 m/s. However, it was observed that correlations between peak impact average slope and peak vertical tibia acceleration average slope, between posterior peak time and peak vertical and resultant tibia acceleration time, between posterior peak instantaneous slope and peak vertical tibial acceleration instantaneous slope during running at 4 m/s. Conclusion: Careful analysis is required when investigating the linear relationship between the impact and shear force, and tibia accelerometer components during relatively fast running speed.

Spray Angle and Break-up Characteristics of Supersonic Liquid Jets by an Impinging Methods with High Speed Projectile (초고속 발사체의 액체 저장부 충돌에 의한 초음속 액체 제트의 분무 속도 및 분열 특성)

  • Lee, In-Chul;Shin, Jeung-Hwan;Kim, Heuy-Dong;Koo, Ja-Ye
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.1
    • /
    • pp.55-60
    • /
    • 2011
  • Pulsed supersonic liquid jets injected into an ambient air are empirically studied by using a high pressure ballistic range system. Ballistic range systems which are configured with high-pressure tube, pump tube, launch tube and liquid storage nozzle. Experimental studies are conducted to use with various impact nozzle geometry. Supersonic liquid jets are generated by an impact of high speed of the projectile. High speed liquid jets are injected with M = 3.2 which pressure is 1.19 GPa. Multiple jets which accompany with shock wave and pressure wave in front of the jet were observed. The shock-wave affects significantly atomization process for each spray droplets. As decreasing orifice diameter, the averaged SMD of spray jets had the decreasing tendency.

An Experimental Study on the Thermal Shock Behavior of PC/PET Alloy (PC/PET 합금의 열충격 특성에 관한 연구)

  • 유인자;이영순;이재학
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.2
    • /
    • pp.64-71
    • /
    • 1995
  • Tests were performed to evaluate the effect of thermal shock behavior on the mechanical properties of PC(poly-carbonate) and PET(polyethylene-terephthalate) with MBS(methylmethacrylate-butadiene-styrene) alloy. Five different material weight fraction for PC/PET were employed : 0/100, 25/75, 50/50, 75/25, and 100/0. Three different weight fraction of MBS were added to each PC/PET : 0, 3, and 9. Therefore fifteen different types of PC/PET/MBS were prepared using single screw extrude. and injection molding machine. One thermal shock cycle consisted of each one hour stay at -$40^{\circ}C$ chamber and $+80^{\circ}C$ chamber without delay. Specimens were thermal shocked up to 20 and 40 cycles. Specific mechanical properities considered in this study include tensile, izod impact, and high rate Impact behaviors. In addition, the morphology of the fractured surface after Izod impact testing was investigated by the SEM (scanning electron microscope).

  • PDF

Study on The Anti-Shock Performance Evaluation of TFT-LCD module for Mobile IT Devices (이동형 정보통신 기기용 화면표시 장치의 내충격 평가 방법 연구)

  • Kim Byung-Sun;Kim Jung-Woo;Lee Dock-Jin;Choi Jae-Boong;Kim Young-Jin;Baik Seung-Hyun;Chu Young-Bee;Koo Ja-Choon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.130-137
    • /
    • 2006
  • TFT-LCD(Thin Film Transistor Liquid Crystal Display) module is representative commercial product of FPD(Flat Panel Display). Thickness of TFT-LCD module is very thin. It is adopted for major display unit for IT devices such as Cellular Phone, Camcorder, Digital camera and etc. Due to the harsh user environment of mobile IT devices, it requires complicated structure and tight assembly. And user requirements for the mechanical functionalities of TFT-LCD module become more strict. However, TFT-LCD module is normally weak to high level transient mechanical shock. Since it uses thin crystallized panel. Therefore, anti-shock performance is classified as one of the most important design specifications. Traditionally, the product reliability against mechanical shock is confirmed by empirical method in the design-prototype-drop/impact test-redesign paradigm. The method is time-consuming and expensive process. It lacks scientific insight and quantitative evaluation. In this article, a systematic design evaluation of TFT-LCD module for mobile IT devices is presented with combinations of FEA and testing to support the optimal shock proof display design procedure.

A Study on Shock Attenuation according to the Flyer Characteristics of a Subminiaturized EFI detonator (초소형 EFI 착화기의 비행편 특성에 따른 충격파 감쇠 연구)

  • Yu, Hyeonju;Kim, Bohoon;Jang, Seung-gyo;Kim, Kyu-Hyoung;Yoh, Jack Jaick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.426-432
    • /
    • 2017
  • An experimental and numerical study on shock attenuation in a solid by a subminiature flyer impact was conducted to determine the performance of a subminiature exploding foil initiator such as, flyer velocity and impulse loading. The obtained attenuation pattern shows the possibility to determine the critical flyer velocity for initiating the miniaturized pyrotechnic unit by figuring out shock intensity and duration according to flight characteristics.

  • PDF

Mitigating the Shocks: Exploring the Role of Economic Structure in the Regional Employment Resilience

  • Kiseok Song;Ilwon Seo
    • Asian Journal of Innovation and Policy
    • /
    • v.12 no.3
    • /
    • pp.323-344
    • /
    • 2023
  • This study investigates the resilient structural characteristics of a region by assessing the impact of the financial crisis. Utilizing panel data at the prefecture level for metropolitan cities across pre-shock (2006-2008), shock (2009), and post-shock (2010-2019) periods, we calculated an employment resilience index by combining the resistance and recovery indices. The panel logit regression measures the influences of the region's industrial structure and external economic factors in response to the global financial crisis. The results revealed that the diversity index of industries contributed to the post-shock recovery bounce-back. Additionally, the presence of large firms and industrial clusters within the region positively contributed to economic resilience. The specialization and the proportion of manufacturing industries showed negative effects, suggesting that regions overly reliant on manufacturing-centered specialization might be vulnerable to external shocks. Furthermore, excessive capital outflows for market expansion were found to have a detrimental impact on regional economic recovery.