• Title/Summary/Keyword: IMPACT FORCE

Search Result 1,437, Processing Time 0.027 seconds

Low-Velocity Impact Analyses of Isotropic and Anisotropic Materials by the Finite Element Method (유한요소법에 의한 등방성과 이방성 재료의 저속 충격 해석)

  • 안국찬;박형렬
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.9-17
    • /
    • 2001
  • The purpose of this research is to analyze the impact resposes(impulsive stress and strain etc.) of anisotropic materials subjected to the low-velocity impact. For this purpose, a beam finite element program based on modified higher-order beam theory for anisotropic materials are developed and used to simulate the dynamic behaviors [contact force, displacement of ball and target, strain(stress) response histories] according to the changes of material property, stacking sequence, velocity and dimension etc.. Test materials for simulation are composed of $[0^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}/0^{\circ}]_{2s} and [90^{\circ}/45^{\circ}/90^{\circ}/-45^{\circ}/90^{\circ}]_{2s}$ stacking sequences. Finally, the results of this simulation are compared with those of wave propagation theory and then the impact responses and wave propagation phenomena are investigated.

  • PDF

Investigating the Adequacy of Rubber Ball Impactor for Floor Impact Noise Evaluation (바닥충격을 평가를 위한 고무공 충격원의 타당성 검토)

  • Jeong, Jeong-Ho;Lee, Sung-Chan;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.468-473
    • /
    • 2002
  • The purpose of this study was to present the possible use of a new standard impactor, the rubber ball(so called, impact ball), and to assess its evaluation method as for heavy-weight impact in multi-story residential buildings, Several experiments were carried out to investigate the effect of the impact on noise propagation in reinforced concrete buildings. Then, the noise from the impact ball was psychoacoustically evaluated. The correlation between the L-value evaluation methods and auditory responses was also investigated. Results show that the ball noise is quite similar to the jumping noise. The noise level of ball is even higher than the bang machine noise, although it has much lower impact force. It was also found that L-indexing seems to bge inappropriate for evaluation of ball noise.

  • PDF

Computational impact responses of reinforced concrete slabs

  • Mokhatar, S.N.;Abdullah, R.;Kueh, A.B.H.
    • Computers and Concrete
    • /
    • v.12 no.1
    • /
    • pp.37-51
    • /
    • 2013
  • The responses of reinforced concrete slabs subject to an impact loading near the ultimate load range are explored. The analysis is carried out on a simply supported rectangular reinforced concrete slab using a nonlinear explicit dynamic procedure and considering three material models: Drucker-Prager, modified Drucker-Prager, and concrete damaged plasticity, available in the commercial finite element software, ABAQUS/Explicit. For comparison purposes, the impact force-time response, steel reinforcement failure, and concrete perforation pattern are verified against the existing experimental results. Also, the effectiveness of mesh density and damage wave propagation are studied independently. It is shown that the presently adopted finite element procedure is able to simulate and predict fairly accurate the behavior of reinforced concrete slab under impact load. More detailed investigations are however demanded for the justification of effects coming from an imperfect projectile orientation as well as the load and structural surface conditions, including the impulsive contacted state, which are inevitable in an actual impact environment.

Effects of Abrasive Size and Impact Angle on the Contact Stress in Abrasive Machining Process (입자연마가공에서의 입자크기 및 충돌각의 영향에 대한 고찰)

  • Kwak, Haslomi;Kim, Wook-Bae;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.27 no.1
    • /
    • pp.34-39
    • /
    • 2011
  • In this study, finite element analysis of particle-surface collision using 2-dimensional elements was performed to observe the effects of abrasive size and impact angle. The result of the simulation on the change in abrasive size revealed that larger abrasive particle induced larger contact stress due to force transfer through slurry fluid as the particle moved and pushed the fluid. This observation brought an important finding that the slurry fluid could make the workpiece surface soften and then change the mechanical properties of the surface layer such as elastic modulus and yield strength. As for the impact angle, it was found that the contact stress increased with the angle of impact and jumped up at a specific angle. Such result would be attributed to the complex effects of the impact velocity and angle.

Development of Side Impact Crash Simulation Methodology and Its Applications (측면충돌모의시험 방법 개발과 응용)

  • 하영호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.101-109
    • /
    • 2000
  • Occupant protection in the side impact of a car became one of the most important issues of car crashworthiness due to high injury level in a side impact crash. An accurate simulation of the side impact crash is an essential tool for the reduction of development time and cost for side impact safety system. This paper describes a new test methodology that can accurately generate the crash pulses of a vehicle and a door in a very cost-effective manner, and then evaluates the injury values of the dummy for the various sled pulses. This test methodology is simple and easy to approach because the door velocity is controlled by the hydraulic actuator and brake and the seat velocity is only adjusted by the friction force of the hydraulic brake. The superiority of the proposed test methodology is proven by the evaluation of dummy's injury values according to the change of the pressure of the hydraulic brake and by the application as a tool for the development of side airbag.

  • PDF

Analysis of Traumatic Brain Injury Using a Finite Element Model

  • Suh Chang-Min;Kim Sung-Ho;Oh Sang-Yeob
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1424-1431
    • /
    • 2005
  • In this study, head injury by impact force was evaluated by numerical analysis with 3-dimensional finite element (FE) model. Brain deformation by frontal head impact was analyzed to evaluate traumatic brain injury (TBI). The variations of head acceleration and intra-cranial pressure (ICP) during the impact were analyzed. Relative displacement between the skull and the brain due to head impact was investigated from this simulation. In addition, pathological severity was evaluated according to head injury criterion (HIC) from simulation with FE model. The analytic result of brain damage was accorded with that of the cadaver test performed by Nahum et al.(1977) and many medical reports. The main emphasis of this study is that our FE model was valid to simulate the traumatic brain injury by head impact and the variation of the HIC value was evaluated according to various impact conditions using the FE model.

A Study on Intelligent Trajectory Control for Prosthetic Arm by Pattern Recognition & Force Estimation Using EMG Signals (근전도신호의 패턴인식 및 힘추정을 통한 의수의 지능적 궤적제어에 관한 연구)

  • 장영건;홍승홍
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.455-464
    • /
    • 1994
  • The intelligent trajectory control method that controls moving direction and average velocity for a prosthetic arm is proposed by pattern recognition and force estimations using EMG signals. Also, we propose the real time trajectory planning method which generates continuous accelleration paths using 3 stage linear filters to minimize the impact to human body induced by arm motions and to reduce the muscle fatigue. We use combination of MLP and fuzzy filter for pattern recognition to estimate the direction of a muscle and Hogan's method for the force estimation. EMG signals are acquired by using a amputation simulator and 2 dimensional joystick motion. The simulation results of proposed prosthetic arm control system using the EMG signals show that the arm is effectively followed the desired trajectory depended on estimated force and direction of muscle movements.

  • PDF

Estimation of Debris Flow Impact Forces on Mitigation Structures Using Small-Scale Modelling (모형축소실험을 이용한 토석류 방지시설 충격하중 평가)

  • Lee, Kyung-Soo;Cho, Seong-Ha;Kim, Jin-Ho;Yoo, Bo-Sun
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.191-205
    • /
    • 2017
  • We use small-scale modelling to estimate the impact ofrce of debris flows on erosion control dams (ECD) and ring nets. The results indicate that the viscoelastic debris flows produced impact forces of 4.14, 3.66, 1.66 kN from the bottom to the top of the ECD. Ring net tests produced a similar trend with generally smaller impact forces (2.28, 1.95, and 1.49 kN). Numerical analysis showed that the weight of the ECD (e.g., concrete retaining walls) provided resistance against the debris flow, whereas deformation of the ring net by elastic-elongation and aggregate penetration reduced the impact force by up to 45% compared with that of the ECD.

AN EXPERIMENTAL STUDY ON REINFORCEMENT OF ACRYLIC RESIN DENTURE BASE (아크릴릭 레진 의치상 강화에 관한 실험적 연구)

  • Kim Hyung-Sik;Kim Chang-Whe;Kim Young-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.3
    • /
    • pp.411-430
    • /
    • 1994
  • The denture may be fractured accidentally by an impact while outside the mouth, or may be cracked or broken while in service in the mouth. The latter is generally a fatigue failure caused by repeated flexure over a period of time. This investigation compared the flexural fatigue resistance, the impact force and the transverse strength of two denture base materials with and without the grid strengthener, the T300, the T800 and the Kevlar fiber to evaluate the fracture resistance. The distribution and behavior of fibers across fracture lines were examined by Hi-Scope Compact Microvision System. Through analyses of the data from this study, the following conclusions were obtained. 1. The flexural fatigue resistance, impact strength and transverse strength of high impact strength resin were higher than those of conventional heat polymerizing resin, but statistically there was no significant difference(p>0.05). 2. All specimens with and without the grid strengthener did not show significant differences in the flexural fatigue, the impact and the transverse strength test(p>0.05). 3. All specimens reinforced with the T300, the T800 and the Kevlar fiber showed significant increase of the fatigue resistance and the impact force(p<0.05). 4. All specimens reinforced with the T800 and the Kevlar fiber showed significant increase of the transverse strength(p<0.05). 5. All specimens reinforced with the T300, the T800 and the Kevlar fiber exhibited greenstick fractures. The fibers tended to remain enveloped in the resin, resisting pull-out.

  • PDF

Study on the Dynamic Stress-Strain Behavior of Solid Propellant Using Low-Velocity Impact Test (저속충격시험을 이용한 고체추진제의 동적 응력-변형률 특성 연구)

  • Hwang, Jae-Min;Go, Eun-Su;Jo, Hyun-Jun;Kim, In-Gul;Kim, Jae-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.10
    • /
    • pp.813-820
    • /
    • 2021
  • In this study, a low-velocity impact test was performed to obtain the dynamic properties of solid propellants. The dynamic behavior of the solid propellant was examined by measuring the force and displacement of the impactor during the low-velocity impact test. The bending displacement was calculated by compensating for the local displacement caused by the low-velocity impact test in the form of three point bending and the shear displacement caused by using a short and thick solid propellant specimen. Stress and strain were calculated using compensated displacements and measured force, and dynamic properties of solid propellants were obtained from the stress-strain curve and compared with static bending test. The dynamic properties of solid propellant under the low-velocity impact loading at various operating temperature conditions such as room temperature(20 ℃), high temperature(63 ℃), and low temperature(-32 ℃) were compared and investigated.