• Title/Summary/Keyword: IMPACT

Search Result 35,817, Processing Time 0.055 seconds

Transient stress analysis of tracked vehicle structures under recoil impact load (주퇴충격하중을 받는 궤도차량 구조물의 천이응력해석)

  • 이영신;김용환;김영완;김동수;성낙훈
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.111-119
    • /
    • 1993
  • In this study, the transient impact structural stress analysis of tracked vehicle structures under recoil impact load is investigated. ANSYS, ABAQUS Code are used for modelling and analytical procedures. The highest maximum Tresca stress occurs on race ring portion and its stress level is (.sigma.$_{T}$)$_{max}$ =20-40kgf/m $m^{2}$. The second highest stress occurs on upper plate of chassis and down plate of turret. The maximum stress level increases with loading direction and elevation angle. The results from liner static load analysis are very much different with impact analysis. Therefore, the practical solutions of structures under impact load can be obtained by only nonlinear transient impact analysis. The impact stress analysis of the steel vehicle structures is conducted. The maximum stress level is less than (.sigma.$_T/)$_{max}$m $m^{2}$. So, the design concept of steel structures can be adapted for new alternatives.s.s.s..s.

  • PDF

Comparison of Rating Methods for the Floor Impact Sound Insulation Performance (바닥충격음 차단성능 평가방법의 상호비교)

  • Kim, Kyoung-Woo;Choi, Hyun-Jung;Yang, Kwan-Seop;Lee, Seung-Eon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.291-294
    • /
    • 2005
  • In this study, we compared and analyzed the floor impact sound insulation performance produced by the rating methods. The rating methods are using reversed A-weighting curve, A-weighted sound pressure levels and arithmetic average. On-site floor impact sound pressure levels of living room and room are measured. The results of this study are 1)the rating using reversed A-weighting curve for heavy-weight impact sound's standard deviation is lower than that of light-weight impact sound, 2)the number of rating using A-weighted sound pressure levels and arithmetic average is larger than that of using reversed A-weighting curve, and 3)the number of rating using reversed A-weighting curve mainly depends on impact sound pressure level of 63Hz in heavy-weight impact sound.

  • PDF

Impact Localization for a Composite Plate Using the Spatial Focusing Properties of Advanced Signal Processing Techniques

  • Jeong, Hyunjo;Cho, Sungjong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.6
    • /
    • pp.703-710
    • /
    • 2012
  • A structural health monitoring technique for locating impact position in a composite plate is presented in this paper. The method employs a single sensor and spatial focusing properties of time reversal(TR) and inverse filtering(IF). We first examine the spatial focusing efficiency of both approaches at the impact position and its surroundings through impact experiments. The imaging results of impact localization show that the impact location can be accurately estimated in any position of the plate. Compared to existing techniques for locating impact or acoustic emission source, the proposed method has the benefits of using a single sensor and not requiring knowledge of anisotropic material properties and geometry of structures. Furthermore, it does not depend on a particular mode of dispersive Lamb waves that is frequently used in other ultrasonic testing of plate-like structures.

Evaluation of Floor Impact Sound by Floor Coverings in Standard Test Building (표준시험동에서 바닥마감재에 따른 바닥충격음 특성평가)

  • Kim, Hak-Cheon;Kim, Yong-Gil;Kim, Sang-Chul;Lee, Hyun-Lyul;Cho, Hyung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.439-440
    • /
    • 2008
  • Five floor coverings were tested with three different types of floor structures in the standard test building in order to evaluate the effectiveness of the floor impact sound reduction. The level of floor impact sound reduction is influenced by not only the types of floor coverings but interrelationship between the floor coverings and floor structures. From the tests, it was found that floor coverings were effective in reducing the floor impact sound using the light impact source. In addition, proper mixtures of the floor structure and the floor covering have shown effectiveness to a certain extent in reducing the floor impact sound using the heavy impact source.

  • PDF

Estimation of Ship Collision Energy with Bridge (교량의 선박충돌 에너지 산정)

  • Lee Seong-Lo;Kang Sung-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.416-419
    • /
    • 2004
  • The kinetic energy during ship collision with bridge piers is released as the permanent deformations of structure and friction between the impact surfaces. So the ship collision energy is estimated from the equations of motions for ship-pier collisions which include the influence of the surrounding water, different impact angles and impact locations. The normal impact energy and tangent impact energy at a collision location and angle can be transformed into the normal impact force and friction force acting on the structure. Also the kinetic energy after collisions is calculated from the linear and angular impulse of ship collisions. The collision energy absorption system such as the protective structures for bridges is designed by evaluating the damage portions of ship and structure during the ship-structure collisions varying from the soft impact to hard impact and then the estimation of it will be suited for the design of protective measures.

  • PDF

A Study on the Impact Behavior and Damage of Laminated Composite Plates Subjected to the Low-Velocity Impact (저속 충격을 받는 적층판의 충격거동과 손상에 관한 연구)

  • Ahn, Kook-Chan;Kim, Kyu-Su;Park, Seung-Bum;Hwang, Byung-Sun
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.1
    • /
    • pp.6-10
    • /
    • 2002
  • This paper presents the impact behavior and damage of laminated composite plates subjected to low-velocity impact. For this purpose, a pendulum impact test for impact behavior and C-scan for impact damage are done. Test materials are carbon/epoxy laminated composite plates and stacking sequences $[0/90_4\;[0/45_2/-45]_s,\;[0/45/-45/90]_s$ and [0/26/51/77/-77/-51/-26/0].

Investigation of the heavy-weight floor impact sound field in a testing building with bearing wall structure (벽식구조 표준시험동에서 중량충격음장에 관한 연구)

  • Yoo, Seung-Yup;Lee, Sin-Young;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.969-973
    • /
    • 2007
  • The heavy-weight floor impact sound field of the receiving room in a testing building with bearing wall structure was investigated using bang machine and impact ball. The sound field was investigated through the impact sound pressure level distribution by the field measurement and computational analysis. Predicted sound field using the computational analysis agree with measurement result in the low frequency band. Result shows that standard deviations of the single number rating value are about 2dB in each impact source. Particularly, impact sound pressure level at 120cm height in 63Hz octave band was 5dB lower than spatial averaging value. It was found that receiving positions in the ministry of construction and transportation notice should be reconsidered.

  • PDF

Calculation of Impact Force between Teeth of Upper and Lower Jaw-Bones while Masticating for Dental Implant System Design (임프란트설계를 위한 저작시 상.하악골치아 사이의 충격력 계산)

  • 권영주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.425-428
    • /
    • 2000
  • In this paper the impact force which occurs on each tooth of jaw-bones while masticating is calculated through the rigid body dynamic analysis. This analysis is done by ADAMS. The impact force calculated in this paper is required for the structural stress analysis of implant system which is needed for the implant system design. The analysis results show that the impact time decreases as the impact force increases, the largest impact force occurs on the front tooth and the impact force is almost normal to the tooth surface together with slight tangential force.

  • PDF

Construction and Evaluation of Scaled Korean Side Impact Dummies

  • Kim, Seong-Jin;Kwon Son;Park, Kyung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1894-1903
    • /
    • 2003
  • It is necessary to have a dummy that describes the anthropometry of a victim with accuracy. This study presents three scaled side impact dummies constructed for the use of MADYMO. They represent five, fifty and ninety-five percentile Korean males ranged from the age of 25 through 39. Thirty-five anthropometric data were used to scale input files required for MADYSCALE. Geometries, inertia, joints and other parameters for dummies were scaled based on the configurations of EuroSID-1. This study proposes the lateral impact response requirements for head, thorax and pelvis of Korean side impact dummies. A lateral drop impact test was conducted for the head at the height of 200 mm. Lateral pendulum impact tests were also carried out for thorax and pelvis at three specific impact velocities. All these test results were obtained from simulation based on MADYMO. All the procedures of the three tests followed the requirement of ISO/TR 9790.

A Study on Composite Materials Frame of Electric Vehicles using Impact Analysis (충돌해석을 이용한 전기자동차 복합소재 프레임 설계에 관한 연구)

  • Ahn, Tae-Kyeong;Lee, Young-Jin;Lee, Sang-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.2
    • /
    • pp.75-80
    • /
    • 2020
  • In this study, we designed car frames for collision analysis using carbon fiber reinforced polymer (CFRP) as the lighter composite material. The impact conditions were 100 percent frontal impact, 40 percent frontal impact, and 90 degrees side impact. The impact analysis measured the maximum stress at velocities of 20km/h and 40km/h for each condition and evaluated the vulnerable points in the car frame. Additional supports have been designed both to improve the weak points in existing vehicle frames, and to be taken into account when new parts are assembled. Our impact analysis compared the results of maximum stress on the car frame with and without the support.