• Title/Summary/Keyword: IMP-6

Search Result 197, Processing Time 0.025 seconds

Comparison of Taste Components of Giant Squid Architenthis dux via Processing Methods (대왕오징어의 가공방법에 따른 맛성분의 비교)

  • Park, Hee-Yeon;Jang, Joo-Ri;Nam, Gi-Ho;Lee, Doo-Seog;Yoon, Ho-Dong;Jang, Mi-Soon
    • Food Science and Preservation
    • /
    • v.18 no.4
    • /
    • pp.508-516
    • /
    • 2011
  • The chemical components (e.g., proximate composition, nucleotide-related compounds, and amino-acid content) of raw, dried, and boiled giant squids were investigated. The moisture contents of raw, dried, and boiled giant squids were 75.65, 39.75, and 41.12%, respectively. The boiled giant squid had a higher moisture content than the dried giant squid. The crude protein contents of raw, dried, and boiled giant squids were 20.10, 56.25, and 49.58%, respectively, with that of the dried giant squid higher than that of the boiled giant squid. The crude lipid contents of the raw, dried, and boiled giant squids were 0.15, 0.57, and 1.35%, respectively, with the boiled giant squid having the highest crude lipid content. The crude ash content of raw, dried, and boiled giant squids were 1.68, 4.50, and 6.77%, respectively. IMP content was detected in the dried (1.21 mg/100 g) and boiled(0.25 mg/100 g) giant squids. In the sensory scores, the degree of bitterness, acidity, and aftertaste had lower values in the dried and boiled giant squids than in the raw giant squid. A total of 18 amino acids were detected in the samples, and most of the samples had high contents of glutamic acid, aspartic acid, proline, and arginine and low contents of histidine, tyrosine, and methionine. The free-amino-acid content was related to the taste component. The major free amino acid contained by the samples were hydroxyproline, alanine, arginine.

Utilzation of Ascidian, Holocynthia roretzi -5. Processing and Quality Evaluation of Fermented Ascidian(I)- (우렁쉥이 이용에 관한 연구 -5. 우렁쉥이 젓갈의 제조 및 품질평가( I )-)

  • LEE Kang-Ho;CHO Ho-Sung;LEE Dong-Ho;RYUK Ji-Hee;CHO Young-Je;SUH Jae-Soo;KIM Dong-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.3
    • /
    • pp.221-229
    • /
    • 1993
  • In this study fermentation of fresh ascidian was attempted to widen the utility of ascidian. Fresh deshelled and sliced ascidians were fermented for 90days at $25^{\circ}C$ with different salt contents of 5, 10, 15 and $20\%$ (w/w) and at $5^{\circ}C$ with 5 and $10\%$ salt. Changes of such components during fermentation as free amino acids, nucleotides and the related compounds, volatile basic nitrogen(VBN), trimethyl amine(TMA), amino nitrogen and total creatinine were determined. VBN increased rapidly after 30days of fermentation at $25^{\circ}C$ while slowly in cases of fermentation at $5^{\circ}C$ and with high salt concentration. Amino nitrogen and the total creatinine also increased gradually until 45 days and 30days of fermentation, respectively, hereafter tended to decrease. ATP and ADP seemed to degrade rapidly in fresh ascidian post harvest and AMP, IMP and inosine also degraded down to hypoxanthine during fermentation. After 45days of fermentation, in the free amino acid composition of fermented ascidian were taurine, proline, glutamic acid, histidine, lysine, alanine and valine in order. The amino acids known as sweetner like prolline, lysine, alanine and glycine were in increased in fermented ascidian. The result of sensory evaluation of fermented ascidian pretreated with acid or sulfite solution showed that the peculiar taste and flavor of ascidian remained without browning for 45days fermentation at $5^{\circ}C$.

  • PDF

THE TASTE COMPOUNDS FERMENTED ACETES CHINENSIS (새우젓의 정미성분에 관한 연구)

  • CHUNG Seung-Yong;LEE Eung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.9 no.2
    • /
    • pp.79-110
    • /
    • 1976
  • In Korea fermented fish and shellfish have traditionally been favored and consumed as seasonings or further processed for fish sauce. Three major items in production quantity among more than thirty kinds which are presently available in the market are fermented anchovy, oyster and small shrimp. They are usually used as a seasoning mixture of Kimchi in order to provide a distinctive flavor. Fermented small shrimp, Acetes chinensis is most widely and largely used ana occupies an important position in food industry of this country. But no study on its taste compounds has been reported. This study was attempted to establish the basic data for evaluating taste compounds of fermented small shrimp. The changes of such compounds during fermentation as free amino acids, nucleotides and their related compounds, TMAO, TMA, and betaine were analysed. In addition, change in microflora during the fermentation under the halophilic circumstance was also investigated. The samples were prepared with three different salt contents of 20, 30 and $40\%$ to obtain the proper degree of fermentation at a controlled tempeature of $20{\pm}2^{\circ}C$. The results are summarized as follows: Volatile basic nitrogen increased rapidly until 108 days of fermentation and afterwards it tended to increase slowly. Amino nitrogen also increased rapidly until 43 days of fermentation and then increased slowly. Extract nitrogen increased and marked the maximum value at 72 day fermentation and then decreased slowly. ADP, AMP and IMP tended to degrade rapidly while hypoxanthine increased remarkably at 27 day fermentation but slightly decreased at 72 day fermentation. It is presumed that the characteristic flavor of fermented small shrimp might be attributed to the relatively higher content of hypoxanthine. In the free amino acid composition of fresh small shrimp abundant amino acids were proline, arginine, alanine, glycine, lysine, glutamic acid, leucine, valine and threonine in order. Such amino acids like serine, methionine, isoleucine, phenylalanine, aspartic acid, tyrosine and histidine were poor. In small shrimp extract, proline, arginine, alanine, glycine, lysine and glutamic acid were dominant holding $18.5\%,\;14.6\%,\;10.8\%,\;8.7\%,\;8.1\%\;and\;7.7\%$ of total free amino acids respectively. The total free amino acid nitrogen in fresh small shrimp was $63.9\%$ of its extract nitrogen. The change of free amino acid composition in the extract of small shrimp during fermentation was not observed. Lysine, alanine glutamic acid, proline, glycine and leucine were abundant in both fresh sample and fermented products. The increase of total free amino acids during 72 day fermentation reached approximately more than 2 times as compared with that of fresh sample and then decreased slowly. Fermented small shrimp with $40\%$ of salt was too salty to be commercial quality as the results of organoleptic test showed. It is found that 72 day fermentation with $20\%\;and\;30\%$ of salt gave the most favorable flavor. It is convinced that the characteristic flavor of fermented small shrimp was also attributed to such amino acids as lysine, proline, alanine, glycine and serine known as sweet compounds, as glutamic acid with meaty taste, and as leucine known as bitter taste. The amount of betaine increased during fermentation and reached the maximum at 72 day fermentation and then decreased slowly TMA increased while TMAO decreased during fermentation. The amount of TMAO nitrogen in fermented small shrimp was $200mg\%$ on moisture and salt free base. Betaine and TMAO known as sweet compounds were abundant in fermented small shrimp. It is supposed that these compounds could also play a role as important taste compounds of fermented small shrimp. At the initial stage of fermentation, Achromobacter, Pseudomonas, Micrococcus denitrificans which belong to marine bacteria were isolated. After 40 day fermentation, they disappeared rapidly while Halabacterium, Pediococcus, Sarcian, Micrococcus morrhuae and the yeasts such as Saccharomyces sp. and Torulopsis sp. dominated. It is concluded that the most important taste compounds of fermented small shrimp were amino acids such as lysine, proline, alanine, glycine, serine, glutamic acid, and leucine, betaine, TMAO and hypoxanthine.

  • PDF

Studies on the Processing of Frozen Seasoned Mackerel Meat 1. Processing of Frozen Seasoned Mackerel Meat and Changes in Its Taste Compounds during Storage (냉동고등어 조미육의 가공에 관한 연구 1. 냉동고등어 조미육의 가공 및 저장중 정미성분의 변화)

  • Lee, Eung-Ho;Kim, Myeong-Chan;Kim, Jin-Soo;Ahn, Chang-Bum;Joo, Dong-Sik;Kim, Se-Kweon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.18 no.4
    • /
    • pp.355-362
    • /
    • 1989
  • For the effective utilization of mackerel as a food sauce, the processing conditions of the frozen seasoned mackerel meat and the changes in taste compounds during its frozen storage were investigated. To prepare the frozen seasoned mackerel meat, the mackerel was headed, gutted manually, washed with tap water and deboned with the meat seperator. Then it was mixed with additives such as emulsion curd(32.1%, w/w), table salt(0.5%, w/w), sugar(2.0%, w/w), sodium bicarbonate(0.4%, w/w), polyphosphate(0.2%, w/w), monosodium glutamate(0.2%, w/w), onion powder(0.3%, w/w), garlic powder(0.1%, w/w), ginger powder(0.1%, w/w), soybean protein(3.0%, w/w) and sodium erythorbate(0.1%, w/w). This seasoned fish meat was frozen with contact freezer, packed In a carton box, and then stored at $-25^{\circ}C$. The moisture and lipid contents in the products were 70.8-71.7% and 10.9-11.3%, respectively. The taste compounds of the frozen seasoned mackerel meat were free amino acids(1625.0-1692.0mg/100g), nucleotides and their related compounds(316.6-366.8 mg/100g) as well as total creatinine(270.2-311.8 mg/100g), and small amount of betaine and TMAO. In free amino acids, the predominant ones were histidine, lysine, glutamic acid and arginine. It was supposed from the results that principal taste compounds of frozen seasoned mackerel meat were free amino acids, and that total creatinine, TMAO, TMA and betaine as well as nucleotides and their related compounds also played an assistant role.

  • PDF

Biochemical Composition and Antioxidative Activity of Marine Microalgae (해양 미세조류의 생화학적 조성 및 항산화성)

  • KIM Se-Kwon;BAEK Ho-Chul;BYUN Hee-Guk;KANG Ok-Ju;KIM Jong-Bae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.3
    • /
    • pp.260-267
    • /
    • 2001
  • The biochemical composition and antioxidative activity of marine microalgae were investigated for the effective utilization of marine resources. Two species of marine microalgae, Nannochloris oculata (N. oculata) of Chlorophyceae and Phaeodactylum tricornutum (P. tricornutum) of Bacillariophyceae, were selected. Because these species showed the high growth rate and easy to continuous culture. The contents of crude protein, lipid, and carbohydrate were $54.91\%,\;11.29\%,\;and\;10.15\%$, for N. oculata and $38.07\%,\;13.19\%,\;and\;7.13\%$, for P. tricornutum, respectively. Glutamic acid was the highest concentration for both species. Galactose (3,712.02 mg/100g), fucose (1,966.03 mg/100g), and glucose (1,814.35 mg/100g) were the major carbohydrates for N. oculatae, and glucose (5,295.45 mg/100g) and mannose (841.34 mg/100g) were for P. tricornutum. K (12,906.86 mg/100g), Mg (1,039.15 mg/100g), Ca (882.57 mg/100g) and Fe (747.20 mg/100g) were the major minerals for N. oculata, and K (11,718.65 mg/100g), Ca (2,003.32 mg/100g), Mg (1,570.84 mg/100g) and Fe (552.58 mg/100g) were for P. tricornutum. In the composition of nucleotides, ADP ($4.77{\mu}mol/g$) was the highest in N. oculata and hypoxanthine (11.74{\mu}mol/g) in P. tricornutum. Large amount of linoleic acid (18: 2, $\omega-6$) was contained in N. oculata. In contrast 16: 1 ($\omega-7$) and 20: 5 ($\omega-3$) were major fatty acid in P. tricornutum. The antioxidative activities of organic solvent extracts of two microalgae were measured by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay method. The chloroform extract obtained from P. tricornutum was identified to be the most effective in DPPH radical scavenging activity.

  • PDF

Assessment of the Contribution of Weather, Vegetation and Land Use Change for Agricultural Reservoir and Stream Watershed using the SLURP model (II) - Calibration, Validation and Application of the Model - (SLURP 모형을 이용한 기후, 식생, 토지이용변화가 농업용 저수지 유역과 하천유역에 미치는 기여도 평가(II) - 모형의 검·보정 및 적용 -)

  • Park, Geun-Ae;Ahn, So-Ra;Park, Min-Ji;Kim, Seong-Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.121-135
    • /
    • 2010
  • This study is to assess the effect of potential future climate change on the inflow of agricultural reservoir and its impact to downstream streamflow by reservoir operation for paddy irrigation water supply using the SLURP. Before the future analysis, the SLURP model was calibrated using the 6 years daily streamflow records (1998-200398 and validated using 3 years streamflow data (2004-200698 for a 366.5 $km^2$ watershed including two agricultural reservoirs (Geumgwang8 and Gosam98located in Anseongcheon watershed. The calibration and validation results showed that the model was able to simulate the daily streamflow well considering the reservoir operation for paddy irrigation and flood discharge, with a coefficient of determination and Nash-Sutcliffe efficiency ranging from s 7 to s 9 and 0.5 to s 8 respectively. Then, the future potential climate change impact was assessed using the future wthe fu data was downscaled by nge impFactor method throuih bias-correction, the future land uses wtre predicted by modified CA-Markov technique, and the future ve potentiacovfu information was predicted and considered by the linear regression bpowten mecthly NDVI from NOAA AVHRR ima ps and mecthly mean temperature. The future (2020s, 2050s and 2e 0s) reservoir inflow, the temporal changes of reservoir storaimpand its impact to downstream streamflow watershed wtre analyzed for the A2 and B2 climate change scenarios based on a base year (2005). At an annual temporal scale, the reservoir inflow and storaimpchange oue, anagricultural reservoir wtre projected to big decrease innautumnnunder all possiblmpcombinations of conditions. The future streamflow, soossmoosture and grounwater recharge decreased slightly, whtre as the evapotransporation was projected to increase largely for all possiblmpcombinations of the conditions. At last, this study was analysed contribution of weather, vegetation and land use change to assess which factor biggest impact on agricultural reservoir and stream watershed. As a result, weather change biggest impact on agricultural reservoir inflow, storage, streamflow, evapotranspiration, soil moisture and groundwater recharge.

Microbiological and Enzymological Studies on the Flavor Components of Sea Food Pickles (젓갈등속(等屬)의 정미성분(呈味成分)에 관(關)한 미생물학적(微生物學的) 및 효소학적(酵素學的) 연구(硏究))

  • Lee, Ke-Ho
    • Applied Biological Chemistry
    • /
    • v.11
    • /
    • pp.1-27
    • /
    • 1969
  • More than thirty kinds of sea food pickles have been eaten in Korea. Out of these salted yellow tail pickle, salted clam pickle, salted oyster pickle, and salted cuttlefish pickle were employed for the analysis of their components, identification of main fermenting microbes, and determination of enzyme characteristics concerned. Also studied was the effect of enzymic action of microbes, which are concerned with the fermenting of pickles, on the production of flavorous 5'-mononucleotides and amino acids. The results are summarized as follows: 1. Microflora observed in the pickles are: (a) Total count of viable cells after 1-2 months of pickling was found to be $10^7$ and that after 6 months decreased to $10^4$. (b) Microbial occurence in the early stage of pickling was observed to be 10-20% Micrococcus spp., 10-20% Brevibacterium spp., 0-30% Sarcina spp., 20-30% Leuconostoc spp., ca 30% Bacillus spp., 0-10% Pseudomonas spp., 0-10% Flavobacterium spp., and 0-20% yeast. (c) Following the early stage of pickling, mainly halophilic bacteria such as Bacillus subtilis, Leuconostoc mesenteroides, Pediococcus halophilus and Sarcina litoralis, were found to exhibit an effect on the fermentation of pickle and their enzyme activities were in direct concern in fermentation of pickles. (d) Among the bacteria participating in the fermentation, Sarcina litoralis 8-14 and 8-16 strains were in need of high nutritional requirement and the former was grown only in the presence of purine, pyrimidine and cystine and the latter purine, pyrimidine and glutamic acid. 2. Enzyme characteristics studied in relation to the raw materials and the concerned microbes isolated are as follows: (a) A small amount of protease was found in the raw materials and 30-60% decrease in protease activity was demonstrated at 7% salt concentration. (b) Protease activity of halophilic bacteria, Bacillus subtilis 7-6, 11-1, 3-6 and 9-4 strains, in the complete media decreased by 10-30% at the 7% salt concentration and that of Sarcina litoralis 8-14 and 8-16 strains decreased by 10-20%. (c) Proteins in the raw materials were found to be hydrolyzed to yield free amino acids by protease in the fermenting microbes. (d) No accumulation of flavorous 5'-mononucleotides was demonstrated because RNA-depolymerase in the raw materials and the pickles tended to decompose RNA into nucleoside and phosphoric acid. (e) The enzyme produced in Bacillus subtilis 3-6 strain isolated from the salted clam pickles, was ascertained to be 5'-phosphodiesterase because of its ability to decompose RNA and thus accumulating 5'-mononucleotide. (f) It was demonstrated that the activity of phosphodiesterase in Bacillus subtilis 3-6 strain was enhanced by some components in the corn steep liquor and salted clam pickle. The enzyme activity was found to decrease by 10-30% and 40-60% at the salt concentration of 10% and 20%, respectively. 3. Quantitative data for free amino acids in the pickles are as follows: (a) Amounts of acidic amino acids such as glutamic and aspartic acids in salted clam pickle, were observed to be 2-10 times other pickles and it is considered that the abundance in these amino acids may contribute significantly to the specific flavor of this food. (b) Large amounts of basic amino acids such as arginine and histidine were found to occur in salted yellow tail pickle. (c) It is much interesting that in the salted cuttlefish pickle the contents of sulfur-containing amino acids were exceedingly high compared with those of others: cystine was found to be 17-130 times and methionine, 7-19 times. (d) In the salted oyster pickle a high content of some essential amino acids such as lysine, threonine, isoleucine and leucine, was demonstrated and a specific flavor of the pickle was ascribed to the sweet amino acids. Contents of alanine and glycine in the salted oyster pickle were 4 and 3-14 times as much as those of the others respectively. 4. Analytical data for 5'-mononucleotides in the pickles are as follows: (a) 5'-Adenylic acid and 3'-adenylic acid were found in large amounts in the salted yellow tail pickle and 5'-inosinic acid in lesser amount. (b) 5'-Adenylic acid, especially 3'-adenylic acid predominated in amount in the salted oyster pickle over that in the other pickles. (c) The salted cuttlefish pickle was found to contain only 5'-adenylic acid and 3'-adenylic acid. It has become evident from the above fact that clam and the invertebrate lack of adenylic deaminase and contain high content of adenylic acid. Thus, they were demonstrated to be the AMP-type. (d) 5'-Inosinic acid was contained in the salted yellow tail pickle in a significant concentration, and it might be considered to be IMP-type. 5. Comparative data for flavor with regard to the flavorous amino acids and the contents of 5'-mononucleotides are: (a) A specific flavor of salted yellow tail pickle was ascribed to the abundance in glutamic acid and aspartic acid, and to the existence of a small amount of flavorous 5'-inosinic acid. The combined effect of these components was belived to exhibit a synergistic action in producing a specific fiavor to the pickle. (b) A specific flavor of salted clam pickle has been demonstrated to be attributable to the richness in glutamic acid and aspartic acid rather than to that of 5'-mononucleotides.

  • PDF