• 제목/요약/키워드: IMC(Internal Model Control)

검색결과 33건 처리시간 0.024초

다중 모델, 제어기, 스위칭을 이용한 비선형 플랜트의 IMC 제어기 설계 (IMC design for nonlinear plants using multiple models, controllers, and switching)

  • 오원근;구세완;서병설
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.241-244
    • /
    • 1996
  • This paper discusses the general properties and the design procedures of Internal Model Control(IMC) scheme for nonlinear plants. Also we propose new nonlinear IMC(NIMC) design method using linear IMC. Although all IMC controllers can be thought simple 'inverse controller', its nonlinear realization is not easy. Propose NIMC is composed multiple linear models, IMC controllers, and switching scheme. The advantages of this method are we can use simple linear IMC design method and need not nonlinear modelings.

  • PDF

뉴로 퍼지 시스템을 이용한 비선형 시스템의 IMC 제어기 설계 (Design of IMC for Nonlinear Systems by Using Adaptive Neuro-Fuzzy Inference System)

  • 김성호;강정규
    • 제어로봇시스템학회논문지
    • /
    • 제7권11호
    • /
    • pp.958-961
    • /
    • 2001
  • Control of Industrial processes is very difficult due to nonlinear dynamics, effect of disturbances and modeling errors. M.Morari proposed Internal Model Control(IMC) system that can be effectively applied to the systems with model uncertainties and time delays. The advantage of IMC is their robustness with respect to a model mismatch and disturbances. But it is difficult to apply for nonlinear systems. ANFIS(Adaptive Neuro-Fuzzy Inference System) which contains multiple linear models as consequent part is used to model nonlinear systems. Generally, the linear parameters in ANFIS can be effectively utilized to control a nonlinear systems. In this paper, we propose new ANFIS-based IMC controller for nonlinear systems. Numerical simulation results show that the proposed control scheme has good performances.

  • PDF

재귀신경망을 이용한 다중모델/제어기 IMC의 과도 응답 개선 (Transient Response Improvement of Multiple Model/Controller IMC Using Recurrent Neural Networks)

  • 오원근;조성언;소지영
    • 제어로봇시스템학회논문지
    • /
    • 제7권7호
    • /
    • pp.582-588
    • /
    • 2001
  • The Multiple Model/Controller IMC(MMC-IMC) is a model-based control method which uses a set of model/controller pairs rather than a single model/controller to handle all possible operating conditions in the IMC control structure. During operation, one model/controller pair that best fit, for current plant situation is chosen by the switching algorithm. The major drawback of the switching controller is the bad transient performance due to the model error and the use fo linear controller for nonlinear plants. In this paper, we propose a method that transient response of the MMC-IMC using two recurrent neural networks. Simulation result shows that the proposed method represents better performance than the usual MMC-IMC`s.

  • PDF

Analytical design of constraint handling optimal two parameter internal model control for dead-time processes

  • Tchamna, Rodrigue;Qyyum, Muhammad Abdul;Zahoor, Muhammad;Kamga, Camille;Kwok, Ezra;Lee, Moonyong
    • Korean Journal of Chemical Engineering
    • /
    • 제36권3호
    • /
    • pp.356-367
    • /
    • 2019
  • This work presents an advanced and systematic approach to analytically design the optimal parameters of a two parameter second-order internal model control (IMC) filter that satisfies operational constraints on the output process, the manipulated variable as well as rate of change of the manipulated variable, for a first-order plus dead time (FOPDT) process. The IMC parameters are designed to minimize a control objective function composed of the weighted sum of the error between the process variable and the set point, and the rate of change of the manipulated variable, and to satisfy the desired constraints. The feasible region of the constrained IMC control parameters was graphically analyzed, as the process parameters and the constraints varied. The resulting constrained IMC control parameters were also used to find the corresponding industrial proportional-integral controller parameters of a Smith predictor structure.

뉴로 퍼지 시스템을 이용한 비선형 시스템의 IMC 제어기 설계 (Design of IMC Controller for Nonlinear Systems by Using Adaptive Neuro-Fuzzy Inference System)

  • 강정규;김정수;김성호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.236-236
    • /
    • 2000
  • Control of Industrial processes is very difficult due to nonlinear dynamics, effect of disturbances and modeling errors. M.Morari proposed Internal Model Control(IMC) system that can be effectively applied to the systems with model uncertainties and time delays. The advantage of IMC systems is their robustness with respect to a model mismatch and disturbances. But it was difficult to apply for nonlinear systems. Adaptive Neuro-Fuzzy Inference System which contains multiple linear models as consequent part is used to model nonlinear systems. Generally, the linear parameters in neuro-fuzzy inference system can be effectively utilized to identify a nonlinear dynamical systems. In this paper, we propose new IMC design method using adaptive neuro-fuzzy inference system for nonlinear plant. Numerical simulation results show that proposed IMC design method has good performance than classical PID controller.

  • PDF

불안정한 플랜트에 대한 멀티레이트 IMC 제어기 설계 (Multirate IMC controller design for plants)

  • 김영백;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1209-1212
    • /
    • 1996
  • In this paper, we design a stabilizing controller with disturbance rejection properties for multirate sampled-data systems which have periodic output measurement scheme. We assume that the plant is open-loop unstable and the disturbance consists of a sum of finite number of sine waves with different frequencies. A sufficient condition for maintaining observability in multirate sampled-data systems is derived. The proposed controller has an IMC structure and can be decomposed into the filtered-disturbance estimator and the inverse of the fast uniform sampled model of the pre-stabilized plant. An example is presented for illustrations.

  • PDF

Real Time Control of an Induction Motor Using IMC Approach

  • Nghia, Duong Hoai;Nho, Nguyen Van;Bac, Nguyen Xuan;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • 제9권3호
    • /
    • pp.456-463
    • /
    • 2009
  • The paper presents a method for controlling induction motors using a nonlinear internal model control (IMC) approach. The process model and the inverse model are developed in the rotor flux coordinate. The main advantage of the proposed method is that it easily specifies the performance (steady state error, transient response, etc.) and the robustness of the controller by means of the IMC filters. Simulation results illustrate the effectiveness of the proposed method. Results on a real time system show that the control system has good performance and robustness against changes in motor parameters (rotor and stator resistances, rotor and stator inductances, rotor inertia).

비최소 위상 확률 시스템을 대상으로 한 견실한 적응 IMC 제어기 (Robust adaptive IMC controller for a class of nonminimum phase stochastic systems)

  • 최종호;김호찬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.139-144
    • /
    • 1993
  • In this paper, a robust reduced order adaptive controller is proposed based on Internal Model Control(IMC) structure for stochastic linear stable systems. The concept of gain margin is utilized to make the adaptive IMC controller robust. We prove the stability of the proposed adaptive IMC system for stable plants under the assumption that upper bounds for system orders are known. Simulation results show that the proposed method has good performance and stability robustness.

  • PDF

Predictive and Preventive Maintenance using Distributed Control on LonWorks/IP Network

  • Song, Ki-Won
    • International Journal of Safety
    • /
    • 제5권2호
    • /
    • pp.6-11
    • /
    • 2006
  • The time delay in servo control on LonWorks/IP Virtual Device Network (VDN) is highly stochastic in nature. LonWorks/IP VDN induced time delay deteriorates the performance and stability of the real-time distributed control system and hinders an effective preventive and predictive maintenance. Especially in real-time distributed servo applications on the factory floor, timely response is essential for predictive and preventive maintenance. In order to guarantee the stability and performance of the system for effective preventive and predictive maintenance, LonWorks/IP VDN induced time delay needs to be predicted and compensated for. In this paper position control simulation of DC servo motor using Zero Phase Error Tracking Controller (ZPETC) as a feedforward controller, and Internal Model Controllers (IMC) based on Smith predictor with disturbance observer as a feedback controller is performed. The validity of the proposed control scheme is demonstrated by comparing the IMC based on Smith predictor with disturbance observer.

Two-Degrees-Of-Freedom Internal Model Position Control for Slave Manipulator Teleoperated by Master Arm

  • Park, Byung-Suk;Kim, Dong-Gi;Jin, Jae-Hyun;Ahn, Sung-Ho;Song, Tae-Gil;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.108.5-108
    • /
    • 2002
  • Recently, the more advanced control technologies are required to deal with the fast and accurate motion in manipulators. For these requirements, many manipulator control methods have been developed such as a computed torque method. This paper proposes a design method, a two-degrees-of-freedom internal model control (TDOF IMC), of the manipulator position control based on combination of the one-degree-of-freedom internal model control (ODOF IMC) system and the disturbance observer. The proposed control scheme is implemented for the position control, which leads the slave manipulator to the desired location by the master arm. The experimental results are presented and discussed through the imp...

  • PDF