• 제목/요약/키워드: IMAGERY

검색결과 1,921건 처리시간 0.024초

초·중학생 대상 극지 소양 교육 프로그램의 효과 (Effects of Polar Literacy Education Program for Elementary and Middle School Students)

  • 정수임;신동희
    • 한국과학교육학회지
    • /
    • 제43권3호
    • /
    • pp.209-223
    • /
    • 2023
  • 이 연구는 초·중등 학생의 극지 소양 함양을 위해 개발된 극지 소양 교육 프로그램을 적용한 효과를 평가하고, 기후 변화 대응 교육을 위한 시사점을 도출하기 위해 수행되었다. Polar-ICE 단체가 정립한 7가지 극지 소양 원리를 중심으로 개발한 모듈식 프로그램 중 과학개념을 강조한 프로그램과 인문학과 사회학적 쟁점을 강조한 프로그램 등 두 과정에 적합한 세부 프로그램을 선정해서 구조화했다. 이들 두 가지 프로그램은 서울 소재 대학 과학교육과에서 주최한 토요 과학교실에서 초등학생과 중학생 26명에게 약 69시간에 걸쳐 적용되었다. 26명의 학생을 세 집단으로 나누어 두 집단에게는 각각 극지 소양을 위한 과학 교육 프로그램과 인문 사회학적 쟁점 교육 프로그램을 실시했고, 나머지 한 집단은 극지 소양과 관련 없는 일반 과학 교육을 적용하여 대조군이 되었다. 프로그램을 적용하기 전후에 세 집단의 학생들은 모두 동일하게 극지 소양 검사와 극지에 대한 연상 단어와 장면을 진술하는 설문에 응답했다. 검사 결과는 비모수검정 방법인 Wilcoxon의 대응쌍 부호순위로 나타내어 프로그램 적용 전후의 향상도를 비교했다. 연구 결과 인지적 측면에서 실험군과 대조군 모두 지식 측면에서 프로그램 적용 후 향상이 나타났으나 실험군이 대조군 보다 향상의 정도가 더 컸으며, 명시적으로 다룬 내용이나 소재에서 특히 분명한 차이를 나타냈다. 정의적 측면에서 프로그램 전후의 차이는 그다지 큰 차이를 나타내지 않았지만, 인문 사회학적 쟁점을 다루었던 집단은 통계적으로 유의미한 향상을 보였다. 극지 심상의 변화는 실험 집단인 두 집단이 대조 집단에 비해 단조로운 이미지에서 좀 더 다양한 이미지로 분산되는 경향이 보였다. 이상의 연구 결과를 바탕으로 극지 소양 원리 과학 교육 프로그램의 효과를 높이기 위해 유의할 점, 과학적 사고를 함양하고 지구계 교육에 도움이 되는 소재로 활용할 필요성, 극지에 대한 태도를 향상하기 위한 방안, 기후 위기 대응을 준비하는 학교 교육 과정과의 연계 등의 시사점을 제안했다.

딥러닝 기반 육상기인 부유쓰레기 탐지 모델 성능 비교 및 현장 적용성 평가 (A Performance Comparison of Land-Based Floating Debris Detection Based on Deep Learning and Its Field Applications)

  • 박수호;장선웅;김흥민;김탁영;예건희
    • 대한원격탐사학회지
    • /
    • 제39권2호
    • /
    • pp.193-205
    • /
    • 2023
  • 집중강우 시 육상으로부터 다량으로 유입된 부유쓰레기는 사회, 경제적 및 환경적으로 부정적인 영향을 주고 있으나 부유쓰레기 집적 구간 및 발생량에 대한 모니터링 체계는 미흡한 실정이다. 최근 인공지능 기술의 발달로 드론 영상과 딥러닝 기반 객체탐지 모델을 활용하여 수계 내 광범위한 지역을 신속하고 효율적인 연구의 필요성이 요구되고 있다. 본 연구에서는 육상기인 부유쓰레기의 효율적인 탐지 기법을 제시하기 위해 드론 영상뿐만 아니라 다양한 이미지를 확보하여 You Only Look Once (YOLO)v5s와 최근에 개발된 YOLO7 및 YOLOv8s로 학습하여 모델별로 성능을 비교하였다. 각 모델의 정성적인 성능 평가 결과, 세 모델 모두 일반적인 상황에서 탐지성능이 우수한 것으로 나타났으나, 이미지의 노출이 심하거나 수면의 태양광 반사가 심한 경우 YOLOv8s 모델에서 대상물을 누락 또는 중복 탐지하는 사례가 나타났다. 정량적인 성능 평가 결과, YOLOv7의 mean Average Precision (intersection over union, IoU 0.5)이 0.940으로 YOLOv5s (0.922)와 YOLOvs8(0.922)보다 좋은 성능을 나타냈다. 데이터 품질에 따른 모델의 성능 비교하기 위해 색상 및 고주파 성분에 왜곡을 발생시킨 결과, YOLOv8s 모델의 성능 저하가 가장 뚜렷하게 나타났으며, YOLOv7 모델이 가장 낮은 성능 저하 폭을 보였다. 이를 통해 수면 위에 존재하는 부유쓰레기 탐지에 있어서 YOLOv7 모델이 YOLOv5s와 YOLOv8s 모델에 비해 강인한 모델임을 확인하였다. 본 연구에서 제안하는 딥러닝 기반 부유쓰레기 탐지 기법은 부유쓰레기의 성상별 분포 현황을 공간적으로 파악할 수 있어 향후 정화작업 계획수립에 기여할 수 있을 것으로 판단된다.

위성영상과 머신러닝 활용 도시열섬 지역 옥상녹화 효과 예측과 이산화탄소 흡수량 평가 (Predicting the Effects of Rooftop Greening and Evaluating CO2 Sequestration in Urban Heat Island Areas Using Satellite Imagery and Machine Learning)

  • 김민주;박정우;박주현;박지수;현창욱
    • 대한원격탐사학회지
    • /
    • 제39권5_1호
    • /
    • pp.481-493
    • /
    • 2023
  • 고밀도 도심지의 열섬현상이 도시 기온을 더 높이고 있으며 이로부터 대기오염 악화, 냉방 에너지 소비 증가 및 온실가스 배출 증대와 같은 부정적 영향들이 발생한다. 녹지의 추가 확보가 어려운 도시 환경에서 옥상녹화는 효율적인 온실가스 감축 전략이다. 본 연구에서는 열섬현상 현황 분석에서 더 나아가 고해상도 위성자료 및 공간정보를 활용하여 연구 지역 내 옥상녹화 가용면적 산정 후 옥상녹화가 가져오는 온도 분포 예측을 통한 열섬현상 완화도 및 이산화탄소 흡수량 평가를 수행하였다. 이를 위해 WorldView-2 위성자료를 활용하여 부산시 도시열섬 지역의 기존 토지피복을 분류하고 머신러닝 기법을 적용하여 옥상녹화 전 후 온도 분포 예측 모델을 개발하였다. 옥상녹화 면적 변화에 따른 열섬현상 완화도를 평가하기 위해 랜덤포레스트 기법을 통해 온도가 종속변수인 온도 분포 예측모델을 구축하였고, 이 과정에서 랜덤포레스트 모델의 훈련자료로 사용될 고해상도 지표 온도 도출을 위해 Google Earth Engine을 활용하여 Landsat-8과 Sentinel-2 위성자료를 융합하는 다중회귀모델을 적용하였다. 또한, 옥상녹화용 초본식생별 이산화탄소 흡수량을 기반으로 녹화 면적에 따른 이산화탄소 흡수량을 평가하였다. 연구 결과를 통해 개발된 위성자료 활용 도시 열섬현상 평가 및 랜덤포레스트 모델 기반 온도 분포 예측 기술은 도시열섬 취약 지역에 확대 적용이 가능할 것으로 기대된다.

위성영상의 방사적 특성을 고려한 구름 탐지 방법 개발 (Development of Cloud Detection Method Considering Radiometric Characteristics of Satellite Imagery)

  • 서원우;강홍기;윤완상;임평채;이수암;김태정
    • 대한원격탐사학회지
    • /
    • 제39권6_1호
    • /
    • pp.1211-1224
    • /
    • 2023
  • 구름은 광학위성을 이용한 국토 관측 및 재난 대응, 변화 탐지 등 지표의 현상을 관측하는데 있어 많은 어려운 문제를 야기한다. 구름의 존재는 영상 처리 단계 뿐만 아니라 최종적으로는 데이터의 품질에 영향을 미치므로 이를 반드시 식별하고 제거하는 과정이 필요하다. 따라서 본 연구에서는 위성영상 내 구름의 분광패턴에 가장 근접한 화소를 탐색 및 추출해 최적의 임계값을 선정하고 임계값을 바탕으로 구름 산출물을 제작하는 일련의 과정을 자동으로 수행하는 새로운 구름 탐지 기법을 개발하고자 하였다. 구름 탐지 기법은 크게 세 단계로 구성된다. 첫 번째 단계에서는 Digital Number (DN) 단위 영상을 대기상층 반사율 단위로 변환하는 과정을 수행한다. 두 번째 단계에서는 대기상층 반사율 영상을 이용하여 Hue-Value-Saturation (HSV) 변환 및 삼각형 임계 처리, 최대우도 분류 등의 전처리를 적용하고 각 영상별로 초기 구름 마스크 생성을 위한 임계값을 결정한다. 세번째 후처리 단계에서는 생성된 초기 구름 마스크에 포함된 노이즈를 제거하고 구름 경계 및 내부를 개선한다. 구름 탐지를 위한 실험 자료로 구름의 공간적, 계절적 분포의 다양성을 보여주는 4~11월 시기에 한반도 지역에서 촬영된 국토위성 L2G 영상을 사용하였다. 제안 방법의 성능을 검증하기 위해 단일 임계화 방법으로 생성된 결과를 비교하였다. 실험 결과, 제안 방법은 기존 방법과 비교하여 전처리 과정을 통해 각 영상의 방사학적 특성을 고려할 수 있어 보다 정확하게 구름을 검출할 수 있었다. 또한, 구름 개체를 제외한 나머지 밝은 물체(판넬식 지붕, 콘크리트 도로, 모래 등)의 영향을 최소화하는 결과를 보여주었다. 제안 방법은 기존 방법 대비 F1-score 기준으로 30% 이상의 개선된 결과를 보여주었으나 눈이 포함된 특정 영상에서 한계점이 있었다.

YOLO를 이용한 SAR 영상의 선박 객체 탐지: 편파별 모델 구성과 정확도 특성 분석 (Ship Detection from SAR Images Using YOLO: Model Constructions and Accuracy Characteristics According to Polarization)

  • 임윤교;윤유정;강종구;김서연;정예민;최소연;서영민;이양원
    • 대한원격탐사학회지
    • /
    • 제39권5_3호
    • /
    • pp.997-1008
    • /
    • 2023
  • 해상의 선박탐지는 다양한 방법으로 수행될 수 있는데, 위성은 광역적인 감시가 가능하고, 특히 합성개구레이더(Synthetic Aperture Radar, SAR) 영상은 주야간 및 전천후로 활용될 수 있다. 본 연구에서는 SAR 영상으로부터 효율적인 선박 탐지 방법을 제시하기 위하여, Sentinel-1 영상에 You Only Look Once Version 5 (YOLOv5) 모델을 적용하여 선박 탐지를 수행하고, 편파별 개별 모델과 통합 모델의 차이 및 편파별 정확도 특성을 분석하였다. 파라미터가 작고 가벼운 YOLOv5s와 파라미터가 많지만 정확도가 높은 YOLOv5x 두가지 모델에 대하여 각각 (1) HH, HV, VH, VV 각 편파별로 나누어 학습/검증 및 평가 그리고 (2) 모든 편파의 영상을 사용하여 학습/검증 및 평가를 실시한 결과, 네 가지 실험에서 모두 0.977 ≤ AP@0.5 ≤ 0.998의 비슷하면서 매우 높은 정확도를 나타냈다. 이러한 결과를 현업시스템의 관점에서 보면, 가벼운 YOLO 모델(YOLOv5s, YOLOv8s 등)로 4개 편파 통합 모델을 구축하는 것이 실시간 선박탐지에 효과적임을 시사하는 것이다. 이 실험에서 사용한 영상은 19,582장이었지만, Sentinel-1 이외에도 Capella, ICEYE 등 다른 SAR 영상을 추가적으로 활용한다면, 보다 더 유연하고 정확한 선박 탐지 모델이 구축될 수 있을 것이다.

미계측 저수지 수체 모니터링을 위한 원격탐사 및 디지털 공간정보 융합 (Convergence of Remote Sensing and Digital Geospatial Information for Monitoring Unmeasured Reservoirs)

  • 이희진;서찬양;조정호;남원호
    • 대한원격탐사학회지
    • /
    • 제39권5_4호
    • /
    • pp.1135-1144
    • /
    • 2023
  • 국내 농업용 저수지는 1970년 이전에 축조되어 준공 년도가 50년 이상 된 노후화된 시설이 대다수이며, 소규모 저수지는 기본 제원 및 수위 등을 파악할 수 있는 계측시스템이 없는 미계측 저수지이다. 준공 이후 호우발생 시 퇴적된 토사 유입, 퇴사량 증가에 따른 저수지 용량 감소 및 산업 고도화에 따른 수질악화 등은 저수지의 용수공급능력을 저하시키고 형상 변화를 야기한다. 따라서, 디지털 정보 및 원격탐사 정보를 결합한 계측 기술을 활용하여 미계측 저수지 수체 모니터링을 위한 공간정보 구축 방안이 필요하다. 본 연구에서는 지표면의 고도정보와 형태를 파악할 수 있는 Light Detection And Ranging (LiDAR) 센서를 활용하여 저수지 시설물의 고해상도 Digital Surface Model (DSM), Digital Elevation Model (DEM) 자료를 구축하고, 멀티빔(MultiBeam) 음향 측심기 기반 수심측량 정보의 융합을 통해 디지털 공간정보 융합 방안을 제시하고자 한다. 드론용 LiDAR를 활용하여 공간해상도 50 cm의 DSM 및 DEM 자료를 구축하여, 저수지 제방, 여수로, 용수로 등의 수리시설물의 디지털 공간정보를 구축하였다. 다분광 영상을 활용하여 수체를 탐지하기 위해 정규식생지수(Normalized Difference Vegetation Index, NDVI), 정규수분지수(Normalized Difference Water Index, NDWI)를 산정하여, 저수지의 수표면을 산정하였다. 또한, 고해상도 DEM 자료는 수심측량 자료와 융합하여 수심도를 작성하였으며, Triangulated Irregular Network (TIN)로부터 저수지 만수면적 및 체적을 산정하였다. LiDAR 센서 및 멀티빔 기반의 수심측량, 광학위성자료 영상 및 다중분광 드론영상을 활용한 수체 탐지 기술 등의 공간정보 융합은 미계측 저수지의 디지털 인프라를 구축하여 저수지의 가용용수공급능력을 모니터링 하기 위한 기초자료로서 활용성이 높을 것으로 사료된다.

기계학습을 이용한 광학 위성 영상 기반의 도시 내 수목 피복률 추정 (Estimation of Fractional Urban Tree Canopy Cover through Machine Learning Using Optical Satellite Images)

  • 배세정;손보경;성태준;이연수;임정호;강유진
    • 대한원격탐사학회지
    • /
    • 제39권5_3호
    • /
    • pp.1009-1029
    • /
    • 2023
  • 도시 수목은 탄소를 저장하고 불투수면적을 감소시키는 도시 생태계의 중요 요소이며, 탄소 저장량 및 순환량 산정 시 주요 정보로 활용될 수 있다. 많은 선행 연구에서 항공 라이다 자료 및 인공지능 기법을 활용하여 고해상도 수목 정보를 산출하고 있으나, 항공 라이다 영상은 제공하는 플랫폼이 제한되어 있으며 비용적인 면에서도 한계가 다수 존재한다. 따라서 본 연구에서는 수원시를 대상으로 자료 취득이 용이한 고해상도 위성 영상인 Sentinel-2를 활용하여 기계학습 기반의 도시 내 수목 피복률(fractional tree canopy cover, FTC)을 추정하고자 하였다. Sentinel-2 시계열 영상으로부터 중앙값 합성을 수행하여 수원시 전역에 대한 단일 영상을 제작하여 활용하였다. 도시 내 토지 피복의 이질성을 반영하기 위하여, 30 m 격자내 10 m 해상도의 광학 지수의 평균 및 표준편차 값과 환경부 세분류 토지 피복 지도 기반 항목별 피복률을 계산하여 기계학습 모델의 입력 변수로 활용하였다. 총 4가지의 입력 변수 조합을 설정하여, 입력 변수 구성에 따른 FTC 추정 정확도를 비교 및 평가하였다. 광학 영상의 평균 정보만을 활용(Scheme 1)했을 때 보다 도시 내 이질적인 특성을 반영할 수 있는 표준 편차 및 피복률 정보를 모두 함께 고려(Scheme 4, S4)했을 때 향상된 성능을 나타낼 수 있었다. 검증용 자료에 대해 S4의 Random Forest (RF) 모델이 0.8196의 R2, 0.0749의 mean absolute error (MAE), 및 0.1022의 root mean squared error (RMSE)로 전체 기계학습 모델 중에서 성능이 가장 높게 나타났다. 변수 기여도 분석 결과 광학 지수의 표준 편차 정보는 도시 내 복잡한 토지 피복 지역에 대해 높은 기여도를 나타내었다. 훈련된 S4 구성의 RF 모델을 수원시 전역에 대해 확장 적용하였을 때, 참조 FTC 자료에 대해 0.8702의 R2, 0.0873의 MAE, 및 0.1335의 RMSE의 우수한 성능을 나타냈다. 본 연구의 FTC 추정 기법은 향후 다른 지역에 대한 적용성이 우수할 것으로 판단되며, 도시 생태계 탄소순환 파악의 기초자료로 활용될 수 있을 것으로 기대된다.

산림 내 도로의 확대는 대형산불을 막을 수 있는가? (Can the Expansion of Forest Roads Prevent Large Forest Fires?)

  • 홍석환;안미연;황정석
    • 한국환경생태학회지
    • /
    • 제37권6호
    • /
    • pp.439-449
    • /
    • 2023
  • 본 연구는 우리나라 대형산불의 진화에 있어 임도(산림도로)의 역할을 검증하고자 하였다. 연구대상지는 그간 발생한 대형산불 중 도로밀도가 가장 높은 지역 중 하나인 강원특별자치도 강릉시에서 발생한 2023년 4월 산불피해지역을 대상으로 하였다. 산불피해지역 범위는 현장확인하였으며, 산불의 피해강도는 Sentinel-2 영상을 통해 분석하였다. 이후, 피해범위 및 강도와 산림도로의 관계를 살펴보았다. 전체 149.1ha의 산불피해지역에 쉽게 접근할 수 있는, 피해지역 경계로부터 50m 이내에 조성된 도로는 약 59.6km로, 인접지역을 포함한 산불피해지역의 도로밀도는 무려 168.9m/ha에 달했다. 도로에 의해 단절된 산림은 모두 83개소로 파편화되어 있었는데, 이들 산림은 모두 비산화에 의한 확산으로 판단할 수 있어, 도로가 산불의 차단선 역할을 하지 못했음이 확인되었다. 진화차량 접근의 용이성에 따른 피해정도를 살펴보기 위해 도로로부터의 거리별 피해강도 분포를 살펴본 결과, 낮은 강도의 피해를 입은 지역은 오히려 도로에서 75m이상 떨어진 곳에서 비율이 대폭 높아짐이 확인되었다. 진화인력의 접근 용이성에 따른 피해정도를 살펴보기 위해 해발고별 피해강도 분포를 살펴본 결과 약한 강도의 피해를 입은지역 비율은 해발고가 높아질수록 늘어난 반면, 강한 강도 이상의 피해지역은 반대로 해발고가 높아질수록 비율이 줄어들었다. 강릉시 난곡동 산불피해지역에서 산림내부 혹은 인접한 도로가 산불진화에 효과적이라는 데이터는 없는 것으로 확인되었다. 이상의 결과는 산림 내 임도밀도를 높이는 것이 산불진화에 효과적이라는 논리와 배치된다. 강릉시 난곡산불지역의 경우 현재 산림청이 주장하는 우리나라 임도밀도인 3.9m/ha에 비해 무려 43배나 높다.

인공위성 원격 탐사 정보가 자료 기반 모형의 미계측 유역 하천유출 예측성능에 미치는 영향 분석 (Analysis of the Impact of Satellite Remote Sensing Information on the Prediction Performance of Ungauged Basin Stream Flow Using Data-driven Models)

  • 서지유;정하은;원정은;최시중;김상단
    • 한국습지학회지
    • /
    • 제26권2호
    • /
    • pp.147-159
    • /
    • 2024
  • 부족한 하천유출 관측 데이터는 모델 보정 작업을 어렵게 만들어 모델의 성능 향상을 제한한다. 위성 기반 원격탐사 자료는 수문 관련 데이터의 확보에 적극적으로 활용될 수 있으므로 새로운 대안이 될 수 있다. 최근에는 여러 연구를 통하여 기존의 개념적/물리적 모델보다는 인공지능을 이용한 해법이 더 적절하다는 평가를 받고 있다. 본 연구에서는 다양한 순환 신경망들과 의사결정나무 기반 알고리즘들을 결합한 자료 기반 접근 방식을 제안하였다. 또한 인공지능 학습을 위하여 인공위성 원격탐사 정보의 활용성을 조사하였다. 본 연구에서 위성영상은 MODIS와 SMAP의 자료가 사용된다. 공적으로 공개된 25개 유역의 자료를 사용하여 제안된 접근 방식을 검증하였다. 전통적인 지역화 접근법에서 착안하여 모든 유역의 자료를 통합하여 하나의 자료 기반 모델을 학습하는 전략을 채택하였으며, Leave-one-out cross-validation 지역화 설정을 이용하여 하나의 모델이 다양한 유역의 하천유출을 예측함으로써 제안된 접근 방식의 잠재력을 평가하였다. GRU + Light GBM 모델이 대상 유역에 적합한 모델 조합으로 판명되었으며(25개 미계측 유역 일 하천유량 예측 모형효율계수 평균 0.7187) 하천유출이 매우 작은 시기를 제외하면 우수한 미계측 유역의 하천유출 예측 성능을 보여주었다. 인공위성 원격탐사 정보의 영향력은 최대 10% 정도로 파악되었으며, 위성 정보의 추가 적용이 풍수기 또는 평수기보다는 저수기 또는 갈수기의 하천유출 예측에 더 큰 영향을 미쳤다.

고해상도 Sentinel-2 위성 자료와 지형효과를 고려한 식생지수 기반의 산림 식생 생장패턴 비교 (A Comparative Study of Vegetation Phenology Using High-resolution Sentinel-2 Imagery and Topographically Corrected Vegetation Index)

  • 유승헌;정성찬
    • 한국농림기상학회지
    • /
    • 제26권2호
    • /
    • pp.89-102
    • /
    • 2024
  • 개엽기, 낙엽기 추정은 식물 생태 주기를 이해하는 데 매우 중요한 역할을 한다. 식물의 근적외선 반사(NIRv)는 일차생산량(GPP)의 강력한 대리지표로 밝혀져 식물계절학 연구에 활발하게 가용되는 추세이다. 하지만 지형에 의한 반사도 왜곡 효과가 상쇄되지 않아 산악 지역의 지형 왜곡 효과에 민감하며 낙엽기를 추정하는 데 성능이 떨어진다. 지형 보정 NIRv(TCNIRv)는 지형 왜곡 효과와 관련된 한계점을 완화하기 위해 경로 길이 보정 방법을 사용한다. TCNIRv는 낙엽기에 대해 NIRv 보다 더 정확한 값을 추정할 수 있다는 사실이 확인되었다. 지형 보정은 경사 및 사면 방향 같은 지형 속성과 연관성이 크기 때문에, 이번 연구에서는 광릉 수목원과 오대산 국립공원 같이 비교적 상이한 지형 특성을 가진 두 산악 지역을 대상으로 남사면과 북사면에서의 예측 결과를 비교하였다. 결과적으로, 두 연구지에서 TCNIRv 를 이용해 예측한 낙엽기는 북사면에서 남사면보다 지연되었고 (광릉 수목원: SFS/NFS - DOY 266.8/268.3; 오대산 국립공원: SFS/NFS - DOY 262/264.8), 이는 NIRv 의 결과와는 반대되는 예측 결과였다 (광릉 수목원: SFS/NFS - DOY 270.3/265.5; 오대산 국립공원: SFS/NFS - DOY 265/261.8). 또한 지형 보정 이후 남사면와 북사면 간의 낙엽기의 차이가 감소했다는 사실도 알 수 있었다 (광릉 수목원: SFS/NFS - DOY 270.3/265.5; 오대산 국립공원: SFS/NFS - DOY 265/261.8). 우리는 사면방향에 따라 식물 생장기를 예측했을 때, TCNIRv 를 이용한 낙엽기 추정에서 NIRv 를 이용해 예측한 결과와 차이점을 가진다고 결론 내렸다. 이로써 다양한 지형 조건에서 사면 별 식물 생장기를 추정하는 데 지형 보정이 필수적이라는 사실을 강조한다.